
doi: 10.31674/book.2024ecc.011 

Exploration of Chemical Complexity 

Synthesis and Magnetic Properties of Polynuclear Complexes of 
1st Transition Metals: A Mini Review 
Apurba Biswas 
Department of Chemistry, Surendranath College, Kolkata, India 

Corresponding Author’s Email Address: apurbacu@yahoo.co.in 

Abstract 

The design and synthesis of multinuclear complexes has attracted considerable interest 
for their utility in small memory devices and quantum phenomena. The studies of 
magnetic studies of those complexes are very important to know their behavior in 
presence of magnetic fields. Now a days, ongoing interest is to synthesis single 
molecule-based magnets (SMMs) that can be derived from transition metals with 
different ligands. Majority of the metals that are used for the synthesis of such single-
molecule magnets are Co(II/III), Mn(II/III), Cu(II) and Ni(II). Different synthetic routes and 
ligands have been used to get multinuclear 1st transition metal complexes, especially 
bridging ligands such as azide, thiocyanate, cyanate, hydroxyl, carboxylates etc. along 
with phenol-based Schiff base ligands are widely used. The exchange coupling between 
the unpaired electrons of two metal centers connected through bridging ligands depends 
on several factors, such as metal metal distance, bridging angles, geometry, etc. 

Keywords: 3d Metal Complex; High Nuclearity; Polynuclear; Single Molecule Magnet 
(SMM) 

Introduction 

The polyuclear transition metal complexes are of ongoing interest for their relevance to 
biological systems (Messerschmidt et al., 2001) due to their utility for designing active 
sites of metalloproteins, in molecular magnetism, especially for the single molecular 
magnets (SMM) (Miyasaka et al., 2004; Sahu et al., 2023; Dey et al., 2023), and for 
devising nano-materials (Weiss, 2010) for their potential use in nanoscience and 
technology. Most importantly, the magnetic properties of the multinuclear complexes 
containing paramagnetic centers have taken great attention for their wide range of 
technological applications. The literature survey reveals that the coupling constant (J) 
depends on the M-A-M (M = metal, A = bridging atom) angle and M-A bond lengths 
(Nanda et al., 1994). The coupling between the metal centers can be modulated by 
changing the geometry of the complex around the metal center or by changing the 
bonding parameters that are associated with the interaction of the metal centers along 
with the bridging ligands. Therefore, appropriate metal ions as well as bridging ligands 
are vital for the formation of desired multinuclear complexes (Mukherjee et al., 2009). 
Various synthetic methods have been developed for obtaining multinuclear transition 
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metal complexes. The synthetic strategies sometimes make it difficult to get predicted 
structure, but the targeted complexes that behave as single-molecule magnets (SMM’s) 
are always a subject of extensive investigation. The large spin ground state and a 
significant negative (easy-axis) magneto anisotropy make the system an intrinsic 
bistability with very slow thermal relaxation of the magnetization at very low 
temperatures in the molecular magnets (Das et al., 2011) that are widely used for their 
possible applications in small memory devices as well as in quantum computing 
(Thomas et al., 1996). 

Review of Literature 

Polynuclear metal clusters with high nuclearity by using a variety of poly-pyridine and 
poly-ß-diketonate ligands and 3d metals V to Cu have gained attention for single-
molecule magnets (SMMs). Many of these, specially [Mn12O12(O2CR)16(H2O)4] and 
[Mn4O3Cl4(O2CEt)3(py)3]2 compounds, can be given as examples of nanoscale magnets 
(Sessoli et al.,1993; Sieber et al., 2005). Various polynuclear clusters form nanoscopic 
architectures with interesting magnetic properties (Gole, Mondal & Mukherjee, 2014). 
Mukherjee et al. (2003) also designed polynuclear complexes with bridging carboxylate 
groups and studied their magnetic properties. The magnetic nature of 1st transition metal 
complexes is shown in Table 1. 

Table 1: Some selective 1st transition metal complexes with their magnetic nature 

Compound Magnetic Nature J (cm-1) Ref. 
[Cu(L)(μ1,1–N3)(ClO4)]2 Antiferromagnetic –7.2 Nandy et al., 2015 

[Cu(L)(μ1,1–NCO)(ClO4)]2 Ferromagnetic +0.41 Nandy et al., 2015 
[{Cu(L)(CF3COO)}2]n Antiferromagnetic −0.47±0.01 Shit et al., 2016 

[(maleate)2Ni3(bpe)4(H2O)4](NO3)2.H2O Ferromagnetic +1.74 Mukherjee et al. 
2003 

[(adipate)Mn(bpe)] Antiferromagnetic −1.84 (0.015) Mukherjee et al., 
2003 

[Mn2O2(O2CCH3)(bpea)2](ClO4)3 Antiferromagnetic −124 Pal, Chan & 
Armstrong, 1992 

[Mn3O4(OH)(bpea)3](ClO4)3 Antiferromagnetic −76 Pal, Chan & 
Armstrong, 1992 

[Cu2L2(N3)]2 Antiferromagnetic −8.5 Koner et al., 2004 

[Cu(L1)(N3)]n(ClO4)n  Ferromagnetic +2.15 Mukherjee et al., 
2002 

[Cu(L2)(N3)]n(ClO4)n  Ferromagnetic +3.61 Mukherjee et al., 
2002 

[Ni2L2(N3)2(H2O)2] Ferromagnetic +23.5 Mukherjee et al., 
2009 

[Ni2L2(NO3)2] Antiferromagnetic −24.27 Mukherjee et al., 
2009 

[(CuL1)2Mn(o-(NO2)C6H4CO2)2] Antiferromagnetic –7.027(2) Ganguly et al., 2023 
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[(NiL)2Mn(NCS)2(CH3OH)2]·CH3OH Antiferromagnetic -4.84 Maity et al., 2021 
[(NiL)2Mn(N(CN)2)2(CH3OH)2]·CH3OH Antiferromagnetic −5.23 Maity et al., 2021 

[Mn4L2(μ3-Cl)2Cl2] Antiferromagnetic −0.19(J1), 
−6.87(J2), 
−0.70(J3) 

Das et al., 2019 

[Mn4L2(μ1,1,1-N3)2(N3)2] Antiferromagnetic +0.11(J1),
−0.64(J2),
+0.11(J3)

Das et al., 2019 

[Ni4(L2)2(μ3-OCH3)2(NO3)](NO3)·CH3OH Ferromagnetic +0.64(J1),
+8.41 (J2)

Ghosh et al., 2019 

[Ni6(L2)2(o-van)2(μ3-OH)4](NO3)2·H2O Antiferromagnetic −5.60(J1), 
−9.39 (J2), 
−5.18(J3), 
+3.72(J4)

Ghosh et al., 2019 

[CuII2(L7)2-(μ-Cl)2][ClO4]2 Ferromagnetic +6.0(1) Singh, Lloret & 
Mukherjee, 2014 

[CuII(L6)(μ-Cl)][ClO4]·CH3CN Antiferromagnetic –0.20(1) Singh, Lloret & 
Mukherjee, 2014 

[(μ1,3-N3){CoII(L1)(μ-
O2CC6H4NO2)CoIII(N3)}2]PF6 

Antiferromagnetic −13.07 Banerjee et al., 
2019 

[Mn2L2(ClO4)2] Ferromagnetic +1.95(2) Seth, Giri & Ghosh, 
2015 

[Mn2L2(NCS)2] Ferromagnetic +0.44(1) Seth, Giri & Ghosh, 
2015 

[Ni2L2(NO2)2] Antiferromagnetic −39 Biswas et al., 2017 
[Ni3L3(OH)(NO2)]·ClO4 Ferromagnetic +18.2 Biswas et al., 2017 

{[(NiL)2Co(NCNCN)2]·CH3CN}∞ Ferromagnetic +4.1 Ghosh et al., 2013 
[(CuL2)2Co{dca}2]·H2O Antiferromagnetic −18.6 Biswas et al., 2014 

Multinuclear complexes with Schiff bases and coligands have shown interesting 
magnetic properties. The combined effect of phenoxide and carboxylate on magnetic 
properties of bridged complexes has also been studied (Nanda et al., 1994). Salen type 
Schiff base ligands form Co(II/III) mixed valence complexes in cis and trans form by 
varying the solvent. Moreover, by changing the anionic coligands e.g. perchlorate, 
thiocyanate, dicyanamide etc., various phenoxido bridged Mn(III) complexes have been 
synthesized (Biswas et al., 2011). The magnetic coupling between the metal centers 
was ferromagnetic in some of these complexes and antiferromagnetic in the others, 
which have been rationalized by DFT calculations and/or considering the structural 
parameters (Seth, Giri & Ghosh, 2015). The tridentate N2O-donor Schiff base/reduced 
Schiff base ligands were utilized for the syntheses of complexes of Ni(II) and Cu(II) 
having various nuclearities. The magnetic measurements showed that the coupling 
between the metal centers can be ferro- or antiferromagnetic depending upon the 
bridging angles and bond distances (Biswas et al., 2017). The supramolecular 
robustness of {[ML]2M′} type building blocks derived from N2O2 ligands has also been 
explored. Firstly, the linear-bent flexibility of the basic trinuclear structural unit {[NiL]2M} 
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was evaluated with dicyanamide by varying M = Ni, Zn and Cd (Das, Gómez-García & 
Ghosh, 2015). Secondly, the use of flexible trinuclear metallatecton {(CuL)2Co} as a 
building block to construct coordination complexes with ortho-, meta-, and para-
benzenedicarboxylates for evaluating positional isomeric effects of the ligand. Both the 
results showed that the trinuclear units could conveniently be used as nodes for the 
synthesis of polynuclear complexes (Biswas et al., 2014). Trinuclear heterometallic CuII–
MnII, CuII–CoII complexes have been prepared by N,O donor ligands with o-nitro 
benzoate anion (Ganguly et al., 2023). The anionic coligands cyano, oximato, azido, 
dicyanomido, and thiocyanato are excellent for the formation of bridged one-dimentional, 
two-dimentional or three-dimentional dinuclear, trinuclear or tetranuclear complexes and 
these complexes play important role in understanding molecular magnetism. Among 
these pseudohalide anions, azide is the excellent for superexchange pathway between 
the paramagnetic centers of 3d transition metal ions (Adhikary & Koner, 2010). Azide 
containing μ-1,1 (end-on, EO) and μ-1,3 (end-to-end, EE) bridging Ni(II) and Mn(II) 
complexes have shown excellent magneto-structural correlations. Unprecedented end-
on double azido bridged low Cu−N(azide)−Cu angles copper(II) complex have been 
reported with their magnetic properties (Koner et al., 2004). Mukherjee et al. (2002) 
reported magnetic properties of three novel end-to-end single azido-bridged 
ferromagnetic copper(II) chains. Magneto-structural studies have been performed for 
the chlorido bridged coordination polymers (Singh, Lloret & Mukherjee, 2014). A rare 
defective dicubane tetranuclear μ3-chlorido and a μ1,1,1-azido bridged Mn(II) complex 
have been reported and coupling constant values of the complex are rationalized by 
DFT calculations (Das et al., 2019). Mixed bridged azido/cyanato copper(II) complexes 
have been studied with their magnetic studies (Nandy et al., 2015). 

Discussion 

Different polynuclear 3d transition metal complexes have been prepared by using 
different types of ligands, most of them are Schiff bases derived from salicylaldehyde 
derivatives and diamines, phenoxido-bridged Cu(II) complexes are most frequent ones. 
The magnetic properties of the Cu2O2 core of these phenoxido-bridged complexes 
depend on several factors, such as coordination geometry of the metal centers, Cu–O 
bond lengths, Cu–O–Cu bond angles, Addition parameters, Cu···Cu distances, which 
are the parameters that have been shown to influence coupling constants (J) values 
(Biswas et al., 2011). Thompson et al. (1996) observed that the J values strongly vary 
for μ-hydroxido, μ-alkoxido and μ-phenoxido bridged Cu(II) complexes. In general, larger 
the Cu–O–Cu angle favours large antiferromagnetic coupling between two 
paramagnetic centers. Simultaneously, Ni−O−Ni angles larger than 98° favour 
antiferromagnetic interactions for double alkoxido or hydroxido bridges Ni(II) complexes 
but the antiferromagnetic coupling becomes more strong for phenoxido bridged Ni(II) 
complexes whereas ferromagnetic coupling appears for angles close to 90°. The 
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presence of an additional syn-syn carboxylato bridge contributes weak or moderate 
antiferromagnetic coupling (Mukherjee et al, 2009). The magnetic coupling of 
heterometallic phenoxido-bridged Ni(II)–Mn(II) complexes is linearly dependent on the 
bridging angles. Antiferromagnetic exchange interaction increases with increasing Ni–
O–Mn angles and the cross over angle is about ∼98° for ferro- to antiferromagnetic 
exchange couplings (Maity et al., 2021). The exchange coupling interaction of 
thiocyanato-bridged Ni(II) complexes depends on various factors such as bridging bond 
distances, bond angles and Ni–N–S–Ni torsion angle. The Ni–S–C and Ni–N–C angles 
which are close to 100° and greater than 160° respectively, are usually weak 
ferromagnetically coupled (Escuer et al., 1996) and the antiferromagnetic coupling 
decreases with greater bridging bond distances. The bridging mode azide coligand 
influences the structure of the transition metal complexes and in general, end-on and 
end-to end coordination modes of azide ligand favour ferromagnetic and 
antiferromagnetic coupling between the paramagnetic metal centers, respectively 
(Adhikary & Koner, 2010). Most of the reported μ1,3-azido bridged Co(II) complexes are 
antiferromagnetic (Banerjee et al., 2019). 

Conclusion 

This review shows the utility of different ligands for the assembly of multiple metal 
centers (whether homometallic or heterometallic) in a predetermined fashion. The 
factors that are responsible for determining the nuclearity and shape of the resultant 
clusters have been identified and monitored to get the desired products. The resultant 
polynuclear homometallic or heterometallic complexes were also utilized as a structural 
building block for the synthesis of coordination polymers. With the judicious variation of 
the ligands and metal ions, different research groups were able to synthesize complexes 
having wide variation of phenoxido bridging angles, which helped to draw magneto-
structural correlations in different coordination complexes of 1st transition metals. 
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