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ABSTRACT 

Chiral vicinal diol units are important intermediates in different natural products and drugs. 
Among various synthetic routes available in the literature, osmium-catalyzed Sharpless 
asymmetric dihydroxylation (AD) of alkenes is the most popular method among organic 
synthetic communities to afford diversified enantiomerically enriched 1, 2-diols. However, the 
high cost of osmium and chiral ligands, as well as the high toxicity of osmium, can 
contaminate target products, limiting the application of AD reactions in large-scale processes. 
Heterogeneous catalysts have an added advantage over homogeneous catalysts due to easy 
recovery and recyclability, which are beneficial in terms of economic, and environmental 
concerns. In this direction, various research groups from different parts of the world have 
worked to overcome the demerits of the homogeneous osmium catalysts by immobilizing the 
active catalytic center onto heterogeneous support, and have achieved very good success. 
This review discusses recent work on supported osmium catalysts for AD reactions, 
highlighting their benefits and drawbacks. It serves as a useful guide for the continued 
development of improved catalytic systems. 

Keywords: Asymmetric Dihydroxylation; Chiral Vicinal Diols; Osmium; Heterogeneous; 
Catalyst 

Introduction 

Catalytic asymmetric reactions by transition metals are of immense importance to synthesize 
enantiomerically pure molecules. Several advantages of such strategies include their 
economic benefit, potential environmental friendliness, and simplicity of purification (Lapuh, 
Mazeh & Besset, 2020; Cabré, Verdaguer & Riera, 2022; Fu, Chen & Nishihara, 2021). The 
fascinating transition metal complex catalysts, visualized to mimic enzymes in many 
complicated asymmetric reactions have been realized with high success. Unlike with 
enzymes, the synthesis of either of the desired antipodes of the chiral molecule using 
transition metal complexes, unlike with enzymes, forms a significant advancement (Leenders 
et al., 2015). In addition to this, the metal complexes have a widened scope of applicability 
that includes a large variety of reactions with a broader substrate choice. It is due to this 
distinct presentation of their features that these catalysts are ideal for making organic 
molecules. Hydrogenation catalysts (Knowles & Sabacky, 1968; Miyashita et al., 1980) and 
oxidation catalysts (Kolbe, VanNieuwenhze & Sharpless, 1994; Wail et al., 1989; Wang & 
Sharpless, 1994; Lu, Xu & Yang, 2000; Zhang et al., 1990; Jacobsen et al.,1991) are some 
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of the synthetic asymmetric catalysts, which compete with enzymes that have long been 
considered monopolists in terms of enantioselectivity. 

Chiral vicinal diol units are important intermediates in different natural products and also in 
drugs e.g. Bicalutamide, Diltiazem hydrochloride, and Taxol. Asymmetric cis-dihydroxylation 
of olefins using osmium compounds is highly significant in this direction (Mushtaq et al., 
2023). The first catalytic version, one of the cornerstones for fine organic synthesis, i.e. AD 
of alkenes is a well-established method for the synthesis of various enantiomerically pure 
vicinal diols (Willingh, 2021).  The importance of the process lies in the utilization of cinchona 
alkaloid-based chiral ligands, which opened an alternative path to allow the catalytic use of 
toxic and volatile osmium (Schroder, 1980; Bolm & Gerlach, 1997; Bolm & Gerlach, 1998). 
However, the large-scale application of homogeneous catalytic systems faced challenges 
due to the prohibitive cost of osmium, and chiral ligands. In addition, there is always a 
probability of contamination of the target product with toxic osmium. 

Therefore, there is an urgent need to replace soluble catalysts with heterogeneous catalysts 
that are recyclable and easily separated from the reaction mixture with little to no effluent 
emissions. Hence, the future and well-being of mankind largely depend on the development 
of science and technology, especially in the field of catalysis, which is related to the fight 
against environmental pollution, and the conservation of natural resources and energy. 

Initial attempts were made to immobilize the ligand on a heterogeneous support, e.g., 
polymer, silica gel and subsequent heterogenization of Os via complexation with ligands but 
with very limited success or no success in terms of recovery and re-use of the precious Os. 
This was explained due to the equilibrium between anchored osmium tetroxide and soluble 
osmium tetroxide during the reaction (Han & Janda, 1996; Bolm & Gerlach, 1998; Kim & 
Sharpless, 1990; Bolm, Hildebrand, & Muniz, 2000). The microencapsulation technique 
(Nagayama, Endo & Kobayashi, 1998; Nagayama, Endo & Kobayashi, 1998; Kobayashi, 
Ishida & Akiyama, 2001; Ishida, Akiyama & Kobayashi, 2003) first adopted by Kobayashi et 
al. addressed the issue and opened up a new direction towards supported osmium catalysts. 
Different types of materials, such as polymers, silica-based materials, ion exchangers, ionic 
liquids, etc. were explored. 

Developing good reoxidation systems for Os (VI) is also highly desirable. Numerous 
reoxidation systems were evolved, of which the two maximums generally used are based 
totally on NMO (N-methylmorpholine-N-oxide) (Knowles & Sabacky, 1968) and potassium 
ferricyanide (Minata, Yamamoto & Tsuji, 1990; Sharpless et al., 1991). Using ferricyanide in 
AD reactions has certain drawbacks that encompass managing huge amounts of salts (1.4 
g/mmol alkene) and effluent disposal, which makes ferricyanide oxidant no longer a real 
desire for large-scale utility. Of late, the NMO-based hydroxylations are revigorated due to 
the simplicity of the unit operation. N-methylmorpholine (NMM) formed as a byproduct from 
the reduction of NMO is easy to remove and recycle after oxidation to NMO in an attempt to 
further add value. 
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Literature Review 
Immobilized Osmium Catalyst on Polymeric Support 
Microencapsulation of OsO4 in polymer capsules via the interaction of pi (π) electrons from 
polystyrene benzene rings with empty d-orbitals of osmium provides a recyclable and 
reusable osmium catalyst for AD reactions (Nagayama, Endo & Kobayashi, 1998; Kobayashi, 
Nagayama & Endo,1998; Kobayashi, Ishida & Akiyama, 2001; Ishida, Akiyama & Kobayashi, 
2003). This initial attempt with polystyrene microencapsulated catalyst (PS-MC Os) 
(Nagayama, Endo & Kobayashi, 1998) afforded low yields, selectivity as well as recovery of 
the catalyst. Later on,they introduced acrylonitrile-butadiene-polystyrene encapsulated 
osmium catalyst (ABS-MC Os) (Nagayama, Endo & Kobayashi, 1998), and poly[4-
(phenoxyethoxymethyl)styrene-co-styrene] microencapsulated osmium (PEM-MC Os) 
(Kobayashi, Ishida & Akiyama,2001) which showed improved activity (Table-1). 
Table 1: AD Reaction of Styrene by Microencapsulated Osmium Catalysts (MC-OsO4)

MC-OsO4
 (5mol%)

(DHQD)2PHAL (5mol%)

H2O:acetone:CH3CN=1:1:1
NMO, rt, slow addition (24h)

HO

PhPh

OH

Entry MC-OsO4
Yield (%), (ee (%), recovery (%)) 

1st run 2nd run 3rd run 

1. PS 4 (-, 97) - - 

2. PEM 85 (78, 100) 66 (78, 100) 84 (78, 100) 

3. ABS 81 (94, 88) 83 (94, 74) 84 (94, 74) 

*PS: Polystyrene; PEM: Poly[4-(phenoxyethoxymethyl)styrene-co-styrene]; ABS: Acrylonitrile-butadiene-polystyrene

The same group further reported the development of air-stable, nonvolatile and less toxic 
“polymer-incarcerated osmium (PI Os) catalysts” (Ryo et al., 2012) for AD reactions. The 
catalysts were prepared using microencapsulation followed by cross-linking so that they 
became insoluble in common organic solvents. Acute toxicity assays showed these catalysts 
were benign. XAFS analysis of the catalyst revealed the reduction of Os (VIII) to Os (IV) 
during catalyst preparation. 

The catalyst produced excellent yield as well as enantioselectivity for different olefins with 
very low leaching of Os (Figure 1). 
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Figure 1:AD of Alkenes Using PI Os Catalyst 

PI Os found its relevance in the high-yielding and enantiomerically enriched scale-up 
synthesis of an important intermediate of Camptothecin which is a known anti-cancer drug 
(Figure 2). 

N
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 Figure 2: Synthesis of Camptothecin Intermediate Using PI-Os Catalyst 

Polyaniline (PANI), which is prepared from readily available commodity chemicals like aniline, 
is extensively studied as a conducting polymer for applications in the fields of electronics and 
optics. PANI has excellent environmental stability and attractive redox properties. In addition, 
PANI exhibited modular doping levels through acid and de-doping through base, inertness 
and insolubility in aqueous and common non-aqueous (organic) solvents. Such 
characteristics are paramount for qualification as support in heterogeneous catalysis. 

By exploiting modular redox behavior of polyaniline, a simplified and convenient protocol for 
the immobilization of osmium onto polyaniline was developed by Choudary et al. (2006). The 
catalyst was well characterized by different instrumental techniques namely FTIR, XPS, UV-
VIS-DRS, and EDAX. The FT-IR spectrum of PANI-Os showed the presence of the Os-O 
bond. UV-Visspectrum of the catalyst also supported the same. XPS analysis of PANI-Os 
revealed the presence of Os (IV) and Os (II) oxidation states (Figure 3).  

  

 

13Trends in Chemical and Biological Research



 
Figure 3: XPS Spectrum of PANI-Os 

When this polyaniline-anchored osmium catalyst was used in the AD of alkenes, it exhibited 
very good reusability up to 5 cycles. They have prepared one bi-functional PANI-Os-Re 
catalyst which can utilize H2O2 in place of NMO as the co-oxidant (Figure 4).  

Ph
Ph

(DHQD)2PHAL, NMO

PANI-Os

Ph
Ph

OH

OH

Yield 91%, Ee 99%

Yield 83%, Ee 98%
(DHQD)2PHAL, H2O2

PANI-Os-Re  
Figure 4: PANI-Os and PANI-Os-Re Catalyzed Dihydroxylation of Trans-stilbene Ion-

exchanger-supported Osmium Catalysts 

Choudary and co-workers contributed a lot (Choudary et al., 2001; Choudary et al., 2001; 
Choudary et al., 2002; Choudary et al., 2004) to asymmetric dihydroxylation catalyzed by ion-
exchanger osmium catalysts. In their first paper (Choudary et al.,2001a) they explored 
layered double hydroxides of Mg and Al (LDH), chemically functionalized silica, and polymeric 
resin as support material for osmium in catalytic AD of alkenes. OsO42- is swapped with LDH-
Cl to afford LDH-OsO4. Similarly, the OsO42- is also anchored onto quaternary ammonium 
groups of silica and organic resin to obtain SiO2-OsO4 and resin-OsO4. All of these catalysts 
were studied using FTIR, and UV-DRS, which indicated that most of the osmate was 
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unaffected during the exchange process. SEM-EDX was used to evaluate the osmium 
content and it was observed that LDH-OsO4 had the maximum osmium content. All the 
catalysts were explored for the Sharpless AD of trans-stilbene and afforded excellent yield 
and enantioselectivity (Figure 5). 

 

Ph

PhHO

OH

Yield 96%, Ee 99%

LDH-OsO4, (DHQD)2PHAL

NMO, rt
Ph

Ph

tBuOH-H2O

 
Figure 5: AD of Trans-stilbene Using LDH-OsO4 

To check the catalytic efficacy, LDH-OsO4 is further used in the dihydroxylation of other 
alkenes (Table 2).  

Table 2: AD of Alkenescatalyzed by LDH-OsO4 

Entry Substrate Yield (%) Ee(%) 

1. 
Ph  

89 90 

2. 

Ph

CO2Me

 

96 97 

3. Ph  
94 95 

4. Cl
Cl  

90 82 

5. 
O

 

94 77 

6. 

Ph  

92 91 

 

Catalysts were almost quantitatively separated by filtration and reused with retention of 
catalytic activity over a number of cycles. In their follow-up article (Choudary et al, 2002), they 
published a detailed study on the use of various co-oxidants to understand the scope, 
limitations, and activity of the catalyst. The combination of NMO and LDH-OsO4exhibited 
xcellent activity over a number of cycles whereas when K3Fe(CN)6 and O2 were utilized as 
co-oxidants, the catalyst lost its activity after the first use only (Figure 6). 
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Figure 6: Schematic Presentation of Effect of Different Co-oxidants in the 
Dihydroxylation of α-methylstyrene Using LDH-OsO4 

As envisaged that leaching of osmate from LDH-OsO4 in the presence of K3Fe(CN)6 and 
O2was the main cause of the deactivation of the catalyst, they designed polymeric resin and 
chemically modified silica-supported osmium catalysts (Figure 7) which showed far better 
activity in AD of alkenes in presence of Fe(CN)63- and oxygen co-oxidants. Resin-OsO4 
showed very high reusability with NMO, K3Fe(CN)6, and O2 (Figure 8). 

 

 
Figure 7: Schematic Presentation of Different Supported Osmium Catalysts 
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Figure 8: Reusability of Resin-OsO4 Catalyzed Dihydroxylation of α-methylstyrene 
Using Various Co-oxidants 

The same group has further reported a trifunctional catalyst to achieve multistep reactions 
in one pot. A trifunctional LDH-PdOsW catalyst was prepared by exchanging PdCl42,- 
OsO42-and WO42- from Na2PdCl4 and K2OsO4 and Na2WO4 respectively, onto chloride-
saturated LDH. The catalyst was characterized using various instrumental techniques, 
such as X-ray photoelectron spectroscopy which showed the oxidation state of the 
catalytically active metals such as Pd, Os, and W. XRD data categorically identified the 
edge alignment of the PdCl42-, OsO42- and WO42-.Tandem Heck, AD, and N-
oxidationafforded the desired diol with excellent yield and enantioselectivity (Figure 9 & 
Table 3). 

Figure 9: Proposed Reaction Sequences Involving LDH-PdOsW 

This novel technique allowed low-priced bulk chemicals for the in-situ preparation of chiral 
diols. Cheaper H2O2 is used to oxidize NMM to NMO which completes the catalytic cycle to 
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produce the end product i.e., substituted optically pure diols. As per the authors, controlled 
addition of H2O2 promotes hydrolysis of osmium mono-gylcolate ester and eventually higher 
ee was achieved. Catalyst was recovered almost quantitatively via filtration and repeated use 
for five times showed only 3% yield loss but ee remained 99%. 

Table 3: LDH-PdOsW Catalyzed Heck-AD Reactions 

Ph

R1HO

OH

1. LDH-PdOsW
Et3N,700C, 8h

2. (DHQD)
2PHALtBuOH/H

2ONMM, H
2O2,RT, 12h

R1
ArI/Br +

Sl. 
No. 

Haloarene Alkene Di-ol product Yield (%) ee (%) 

1. PhI 
Ph

Ph

Ph

OH

HO

 

85 99 

2. 

MeO

I CO2Et  

MeO

CO2Et

OH

OH 93 99 

3. PhBr CO2Me
CO2Me

OH
Ph

OH 90 99 

4. PhI 
Ph Ph

Ph

OH

HO 90 47 

Choudary et al. (2004) reported nanocrystalline magnesium oxide (NAP-MgO) supported 
bifunctional catalysts to promote one-pot sequential Heck and AD reactions to afford 
diversified optically active diols. Nanocrystalline metal oxides have interesting properties as 
support materials because they have many surface sites, such as crystal corners, edges, ion 
vacancies, etc., which improve surface reactivity. NAP-Mg-PdOs and NAP-Mg-OsW catalysts 
were obtained by treating NAP-MgO with an aqueous solution of Na2PdCl4, K2OsO4, and 
Na2WO4 (Figure 10). 

NAP-MgO

K2OsO4.2H2O
Na2WO4

H2O, 12h, N2 H2O, 12h, N2

K2OsO4.2H2O
Na2PdCl4

NAP-Mg-OsW NAP-Mg-PdOs

Figure 10: Synthesis of NAP-Immobilized bi-functionalCatalysts 
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Using NAP-PdOs in the one-pot Heck followed by dihydroxylation starting from aryl iodides 
and alkenes, diversified diols were obtained in the same reaction vessel (Table 4). Similarly, 
NAP-OsW was utilized in the concomitant dihydroxylation and N-oxidation (Figure 11). 

Table 4: Tandem Heck-AD reaction using NAP-PdOs 

Entry Aryl halide Olefin Product Yield%/ee% 

1 PhI 
Ph  

Ph

Ph

OH

HO

 

80/85 

2 PhI CO2Me  CO2Me

OH
Ph

OH

 

85/73 

3 

MeO

I

 

CO2Et  

MeO

CO2Et

OH

OH

 

82/78 

 

Rection condition: NAP-PdOs (3 mol %), aryl halide (1 mmol), olefin (1 mmol) and Et3N (1.3 
mmol) in CH3CN (2 mL) were stirred at 70 °C for 12 – 16 h. After completion of the Heck 
coupling, the heating was stopped and NMO (1.3 mmol) and (DHQD)2 PHAL (7.8 mg, 0.01 
mmo) in t-BuOH-H2O (5 : 1, 6 mL) were added under stirring 

 

Ph
Ph

+
N

O
NAP-OsW
(DHQD)2PHAL
H2O2

OH

Ph
OH

Ph

Y = 70%, ee = 80%
 

Figure 11: One Pot N-oxidation and AD Using NAP-OsW 

Dehury and Hariharakrishnan, (2007) reported a recyclable “osmate-exchanged chloroapatite 
(CAP-OsO4) catalyst” for AD reaction of alkenes. Weakly amphoteric apatites can act as 
supports for diversified ions i.e., cations and anions as they can be easily placed into the 
apatite framework owing to its high propensity for ion exchange. CAP-OsO4 was prepared by 
exchanging OsO42- onto chloroapatite. The catalyst was explored in AD reactions on a variety 
of alkenes containing diversified functional groups e,g. α,β-unsaturated carbonyls, amides, 
carbonyls, and esters. A good to moderate yield of product was obtained along with high 
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optical purity. The catalyst was recovered and reused for multiple times without a noticeable 
drop in activity. Osmium leaching from the reaction mixture was also tested and found to be 
nominal. 
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R
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NMO, RT Yield 71-96%, ee 90-97%

OH
CO2Me

OH

93% (ee 95%)

OH
CO2Me

OH

92% (ee 92%)
MeO

OH

OH

96% (ee 96%)

OH

OH

94% (ee 97%)

H
N

O

HO

OH

H
N

O

HO

OH

73% (ee 90%)
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Figure 12: CAP-OsO4 Catalyzed AD Reaction 

Shilpa, Manna and Rana (2015) reported a bioinspired nanoparticle assembly route to obtain 
a highly effective immobilized osmium catalyst for the AD reactions. Biomaterials have gained 
immense significance in organic synthesis due to the control achieved over the reaction can 
be used to develop new routes to functional materials. Thus Poly (allylamine) hydrochloride 
(PAH) and colloidal silica were used to get a microsphere structure to provide the required 
textural property and stability to hold osmium securely. Different analytical methods such as 
DLS, SEM, TEM, EDX, FTIR, UV-Vis, XPS are used to characterize the catalyst thoroughly. 
The SEM images depicted spherical morphology and TEM analysis showed the formation of 
silica nanoparticles. XPS analysis revealed the presence of hexavalent osmium. FTIR 
analysis showed an effective interaction between osmate and PAH. The scope of the catalytic 
system was studied for AD reaction utilizing NMO as a co-oxidant (Table 5). The efficiency of 
the catalyst is explained by the advantage of the encapsulation of the catalytic center by 
polyamines leading to increased activity and the structural stability provided by the inorganic 
material. 

Table 5: Synthesis of Chiral Diols Using Microsphere Encapsulated Os Catalyst 

Entry Alkene Conversion of alkene 
(%) 

Yield of diols (%) Ee (%) 

1. Ph

Ph  

99 94 98 

2 Ph

 

99 96 98 

3 
Ph  

99 99 >99 
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4 

 

99 98 96 

5  99 97 99 

 

Reaction condition:  Alkene (0.2 mmol), NMO (1.3 equiv.), Os@MS prepared using PAH 
(0.118 mol-% of Osw.r.t. olefin), CH3COCH3/H2O (12:1 v/v, 0.6 mL), room temp. 
(DHQD)2PHAL (0.01 equiv.) was used as the ligand and olefin was added slowly within a 
reaction period of 8 h. 

Ionic Liquid-modified Osmium Catalysts 
Ionic liquid-mediated organic transformations draw attention due to their easy recovery and 
environmental concern. Qiu et al., (2011) reported “1-methyl-3-(trimethoxysilyl) 
propylimidazolium chloride (MTMSPIm+Cl-)” ionic liquid modified bimodal mesoporous silica 
(FBMMs) to anchor osmium and the chiral ligand for the AD reaction. To prepare the catalyst, 
FBMMs were stirred with the acetonitrile/water solution of ((QN)2PHAL) and 
K2Os(OH)4.2H2O. Immobilization of the ionic liquid on to the mesoporous silica established 
through analysis by FTIR and pore sizes of the catalyst were calculated using nitrogen 
adsorption and desorption studies. XRD revealed the reduction in the mesostructured after 
the introduction of OsO4-(QN)2 PHAL. Catalytic efficacy was demonstrated in the AD reaction 
of trans-stilbene. It showed good retention of chiral efficiency over five recycles but product 
formation dropped significantly e.g. yield loss over six cycles: 99% to 25%. This is attributed 
to the leaching of the osmium metal as well as the chiral ligand from the catalyst matrix. 

Conclusion 

This review elucidates the importance and evolution of the supported osmium catalysts for 
the synthesis of syn diols which are the important building block for numerous biologically 
relevant organic molecules. Supported catalysts exhibited good to excellent recyclability 
which further reduces the cost of the goods as well as metal effluent. This is expected to 
serve as a guiding tool for further development in this field of osmium catalysis. 
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