Fish Species Diversity of the Lower Stretch of River Damodar with References to Pollution Effect

Lina Sarkar

Department of Zoology, Sri Chaitanya College, Habra. 24 Pargana North, West Bengal, India Corresponding Author's Email: sarkarlina321@gmail.com

Abstract:

Documentation of Icthyofauna reveals the present status of fish diversity and also indicates the effect of anthropogenic activities. Flow diversion is a serious problem of Damodar River in the lower valley, because the original pathway is totally dried up and in place of it a man-made channel has been drawn which represents the river at present. This channel joins river Hooghly at Attannogate. Investigation was done from Tarakeshwarup to Attannogate to reveal the existing fish faunal diversity of this confluence area. The present study reveals that the confluence stretches of Damodar River houses 65 fish species belonging to 13 Orders, 24 Families and 49 Genera. The study indicates that 12 fish species recorded are brackish water fish. These brackish species entered due to tidal influences and are considered as transient species. The process of migration was revealed at this region, where those transient species were recorded to migrate upstream up to Tarakeshwar area. At Tarakeshwar spawns of these fishes were recorded during the post-monsoon season. At Tarakeshwar and Attannogate WQI is below 30, which indicates favourable aquatic habitat for fishes. Moreover, Clupisoma garua, Gonialosa manmina, Septipinna phasahad very high value catch data annually from Attannogate region which is a positive sign to the favorable aquatic condition. The physiochemical water quality parameters have been recorded during the study period and result indicated that water of Damodar river at the confluence was suitable for irrigation and also suitable habitat for fish conservation.

Keywords: River; Pollution; Icthyofauna; Water Quality

Introduction:

The Damodar River is a main tributary of River Hooghly and one of the most important among all other east flowing rivers. It flows through an undulating topography at its origin passes through hilly areas of Chotonagpur plateau created several falls and gorges on its way. The river originates from the hills of Chotonagpur in Jharkhand drains through undulating upper and middle valley and ultimately joins River Hooghly at Attannogate near Kolkata. The narrow upper valley flows through Gorge and rushing stream carries silt and mud with it which is deposited in the lower valley and as a result the depth of the riverbed rises, which leads to frequent flood. The river houses a good

Sarkar

Fish Species Diversity of the Lower River Damodar and Pollution Effects

number of food fishes in the past (Sarkar & Banerjee,2012) but this research reveals the ichthyofaunal diversity of the lowervalley in the context of increasing water pollution. So, it is utmost necessary to identify and create proper documentation of fish species of lower Damodar River in order to develop an estuarine fish species diversityinformation system.

Methodology

Collection of Fish species: The present study was conducted during August 2020 to December 2023 and fishes were collected from eight collection sites including 1.Tarakeshwar,2.Santhoshpur,3.Bikunthapur,4.Deulpara,5.Attannogate,6.Garchumuk,7 .Silampur, 8.Madaribar with the help of local fishermen using different type of nets, namely Cast net, Dragnet, Gill net, and Bharjal. Photographs were immediately taken in the field before preservation for further study. The fish landing stations at Attannogate were also studied during all the seasons. The fish species were identified by studying Morphometric and Meristic characters following reference Books and Journals, Day(1878), Jayaram(2010), Talwar and Jhingran(1991) Fricke *et al.* (2020), Das *et al.*, (2004), Nelson, Grande and Wilson (2016). The heavy metal content limits in water and fish tissue (Muscle) were studied by using AAS(Atomic Absorption Spectro Photometer). The hydrological parameters of water were analyzed following standard methods APHA 1998.

Observation Table

Table 1: Hydrology of 1. Tarakeshwar (a.Sanhoshpur, b.Bikunthapur,c.Deulpara) 2.Attannogate (a.Garchumuk,b.Silampur, c.Madaribar) at lower stretch of Damodar River during the study period

Month	Tempe e of W Min Max		pH Min	Max		(PSUMi ax	DO(m Min	ig/l) Max	Trans (cm) Min Max	perency	Alkalin (%) Min	ity Max
August	25.8	25.9 4	8.0 2	8.05	18.9	18.96	7.12	7.16	11	12.2	24.8	23.8 8
September	22.2	24.6 8	7.4 5	7.66	15.2	15.4	7.4	7.5	15	18.6	26	29.2
October	18.8	19.9 6	7.0 9	8	14.5	14.76	8.20	8.9	14	16.6	25.10	26.2
November	12.6 4	16	7.1 5	7.18	12	12.5	7.56	7.58	15	18.4	13.9	16
December	12.5	33.9 4	7.1 9	8	12.01	12.5	7.23	8	18.8	19.82	18.2	19.6
January	10.2	10.6 6	7	7.2	16.8	16.92	8	8.2	12	16.2	14.8	15.8 8
February	11.4	11.8 8	7.8	7.9	24.3	24.56	6.5	7	16.8	16.82	16.98	23.5
March	14.6 4	14.0 8	6.9	7	24.0	24.02	8	8.5	14	16.2	18.2	16.6
April	17.9	18.5 6	7	7.2	24.8	24.88	6.3	7	13	17.2	17	18.8
Мау	38.2	39.5	7.8	8	20.6	20.82	5.9	6	14.9	18.6	21.88	23.8

Sarkar Fish Species Diversity of the Lower River Damodar and Pollution Effects

	8	8										8
June	37.7 0	38.1 2	7.9	8.2	24.5	24.8	8	8.4	8.5	9.01	14.8	16.6
July	33.6 2	33.6 7	7.5	7.6	23.8	25.9	4.9	5	4.6	9.01	24	28.8

Table 2: Shows the Fish Species Diversity Indices During the Study Period

					-
S1	SPECIES RICHNESS	86	45	86	74
	MARGALEF INDEX	12.14253527	16.92261999	12.895674	12.84569
	SHANNON WIENER INDEX	5.08533234	5.08712858	5.846921	5.846971
S2	SPECIES RICHNESS	86	89	86	86
	MARGALEF INDEX	11.01297207	11.3027427	12.846325	12.7894587
	SHANNON WIENER INDEX	4.065523099	4.069572743	4.2189	4.3569
S3	SPECIES RICHNESS	86	87	86	86
	MARGALEF INDEX	11.06163392	19.25700165	16.89468	16.52398
	SHANNON WIENER INDEX	4.010821485	4.122511875	4.128459	4.15789
S4	SPECIES RICHNESS	86	89	89	89
	MARGALEF INDEX	11.15253527	16.67261999	16.28745	16.3258
	SHANNON WIENER INDEX	4.08533234	4.08712858	4.5892	4.6897
S5	SPECIES RICHNESS	89	89	82	82
	MARGALEF INDEX	11.01297207	11.3027427	11.5487	11.3659
	SHANNON WIENER INDEX	4.2569299	4.254672743	4.58762	4.02546
S6	SPECIES RICHNESS	89	87	89	89
	MARGALEF INDEX	11.06163392	19.25700165	15.32466	15.24879
	SHANNON WIENER INDEX	4.010821485	4.122511875	4.125846	4.236589
S7	SPECIES RICHNESS	89	89	89	89
	MARGALEF INDEX	12.01297207	12.3027427	12.35698	12.45698
	SHANNON WIENER INDEX	4.235689213	4.069572743	4.25789	4.650245
S8	SPECIES RICHNESS	89	89	89	89
	MARGALEF INDEX	10.01297207	10.3027427	10.56987	10.23659
	SHANNON WIENER INDEX	4.123895213	4.123533865	4.12587	4.25689

Table 3: Shows the List of Fishes from the lower stretch of Damodar River in the Lower Stretch from Tarakeshwar to Attannogate

SI.	Class	Family	Sub Family	Order	Name of the Fish	Sta
No		-	-			tus
1.	Actinopterygii	Cyprinidae		Cypriniformes	Amblypharyngodon mola	LC
2.	Actinopterygii	Cyprinidae		Cypriniformes	Aspidoporia jaya	LC
3.	Actinopterygii	Cyprinidae		Cypriniformes	Chagunius chagunio	LC
4.	Actinopterygii	Cyprinidae		Cypriniformes	Cirrhinus reba	LC
5.	Actinopterygii	Cyprinidae		Cypriniformes	Laubuka laubuca	NT
6.	Actinopterygii	Cyprinidae		Cypriniformes	Pangusius pangusia	LC
7.	Actinopterygii	Cyprinidae		Cypriniformes	Puntius sophore	LC
8.	Actinopterygii	Cyprinidae	Danionidae	Cypriniformes	Salmostoma bacaila	LC
9.	Actinopterygii	Cyprinidae	Danionidae	Cypriniformes	Salmostoma phulo	LC
10.	Actinopterygii	Cyprinidae	Danionidae	Cypriniformes	Securiculagora	LC

Sarkar Fish Species Diversity of the Lower River Damodar and Pollution Effects

11.	Actinopterygii	Cyprinidae	Danionidae	Cypriniformes	Danio aequipinnatus	LC
11.	Actinopterygii	Cobitidae	Danioniuae	Cypriniformes	Lepidocephalichthys	LC
12.	Actinopterygii	Cobilidae		Cyphillionnes	quntea	10
13.	Actinopterygii	Cyprinidae	Barbinae	Cypriniformes	Pethia conchonius	LC
14.	Actinopterygii	Latidae		Perciformes	Lates calcarifer	LC
15.	Actinopterygii	Ambessidae		Perciformes	Ambassis kopsii	NE
16	Actinopterygii	Ambessidae		Perciformes	Chanda nama	LC
17.	Actinopterygii	Ambessidae		Perciformes	Parambassis baculis	LC
18.	Actinopterygii	Ambessidae		Perciformes	Parambassis ranga	LC
19.	Actinopterygii	Badidae		Anabantiformes	Badis badis	LC
20.	Actinopterygii	Nandidae		Anabantiformes	Nandus nandus	LC
21.	Actinopterygii	Osphronemidae		Anabantiformes	Trichogaster fasciata	LC
21.	Actinopterygii	Osphronemidae		Anabantiformes	Trichogaster lalius	LC
23.	Actinopterygii	Osphronemidae		Anabantiformes	Trichogaster chuna	LC
24.	Actinopterygii	Channidae		Anabantiformes	Channa orientalis	VU
24.	Actinopterygii	Channidae		Anabantiformes	Channa punctata	LC
26.	Actinopterygii	Channidae		Anabantiformes	Channa striatus	LC
20.	Actinopterygii	Belonidae		Beloniformes	Xenentodon cancila	LC
						LC
28.	Actinopterygii	Anguillidae		Anguilliformes	Anguilla bengalensis Anguilla bicolor	
29.	Actinopterygii	Anguillidae Clupeidae		Anguilliformes Clupeiformes	Corica soborna	NT LC
30.	Actinopterygii					
31.	Actinopterygii	Clupeidae		Clupeiformes	Gonialosa manmina	LC
32.	Actinopterygii	Clupeidae		Clupeiformes	Gudusia chapra	LC
33.	Actinopterygii	Clupeidae		Clupeiformes	Nematalosa galatheae	LC
34.	Actinopterygii	Clupeidae		Clupeiformes	Tenualosa ilisha	LC
35.	Actinopterygii	Pristigasteridae		Clupeiformes	Llisha elongate	LC
36.	Actinopterygii	Engraulidae		Clupeiformes	Setipinna phasa	LC
37.	Actinopterygii	Engraulidae		Clupeiformes	Setipinna tenuifilis	DD
38.	Actinopterygii	Siluridae		Siluriformes	Wallago attu	VU
39.	Actinopterygii	Siluridae		Siluriformes	Ompok pabo	NT
40.	Actinopterygii	Siluridae		Siluriformes	Ompok bimaculatus	NT
41.	Actinopterygii	Siluridae		Siluriformes	Mystus cavasius	LC
42.	Actinopterygii	Bagridae		Siluriformes	Mystus bleekeri	LC
43.	Actinopterygii	Bagridae		Siluriformes	Mystus tengra	LC
44.	Actinopterygii	Bagridae		Siluriformes	Ailia coila	NT
45.	Actinopterygii	Bagridae		Siluriformes	Silonia silondia	LC
46.	Actinopterygii	Pangasilidae		Siluriformes	Pangasius pangasius	LC
47.	Actinopterygii	Synodontidae		Aulopiformes	Harpadon nehereus	NT
48.	Actinopterygii	Mugilidae		Mugiliformes	Planiliza macrolepis	LC
49.	Actinopterygii	Mugilidae		Mugiliformes	Chelon parsia	LC
50.	Actinopterygii	Mugilidae		Mugiliformes	Rhinomugil corsula	LC
51.	Actinopterygii	Mugilidae		Mugiliformes	Valamugil buchanani	LC
52.	Actinopterygii	Oxudercidae	Oxudercina	Gobiliformes	Apocryptes bato	LC
			е			
53.	Actinopterygii	Oxudercidae		Gobiliformes	Apocryptodon madurensis	LC
54.	Actinopterygii	Oxudercidae		Gobiliformes	Glossogobius giuris giuris	LC
55.	Actinopterygii	Oxudercidae		Gobiliformes	Parapocryptes	LC
56	Actinopterygii	Oxudercidae		Gobiliformes	serperaster	LC
56.					Parapocryptes batoides	LC
57.	Actinopterygii	Oxudercidae		Gobiliformes	Periophthalmus kalolo	
58.	Actinopterygii	Mastacembelidae		Synbranchiformes	Macrognathus pancalus	LC
59.	Actinopterygii	Mastacembelidae		Synbranchiformes	Mastacembelus armatus	LC
60.	Actinopterygii	Synbranchidae		Synbranchiformes	Monopterus cuchia	LC
61.	Actinopterygii	Notopteridae		Osteoglossiformes	Notopterus notopterus	LC
62.	Actinopterygii	Soleidae		Pleuronectiformes	Synaptura albomaculata	NE
63.	Actinopterygii	Cynoglossidae	Cynoglossin ae	Pleuronectiformes	Cynoglossus macrostomus	VU
			ac			

Sarkar Fish Species Diversity of the Lower River Damodar and Pollution Effects

65.	Actinopterygii	Cynoglossidae	Cynoglossin	Pleuronectiformes	Cynoglossus arel	LC
			ae			

LC:Least concerned category; NT: Nearly Threatened; NE: Not Evaluated ; VC: vulnerable category; DD : Data deficit ; ED: Endangered species. (IUCN, 2021)

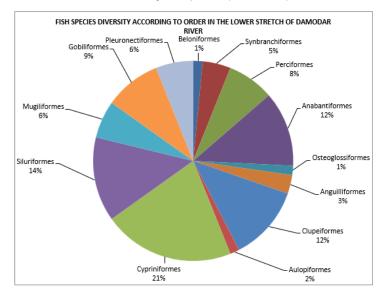
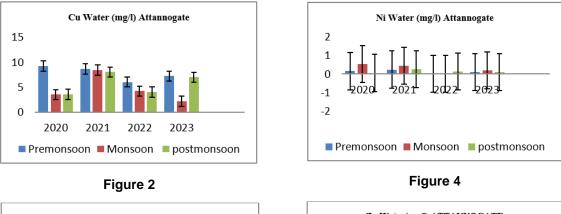
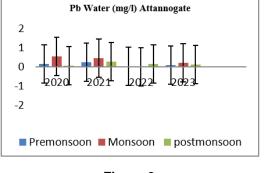




Figure 1: Damodar River Fish Diversity According to Orders

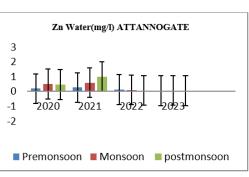


Figure 5

Chemical Innovations in Biological Exploration

Sarkar Fish Species Diversity of the Lower River Damodar and Pollution Effects

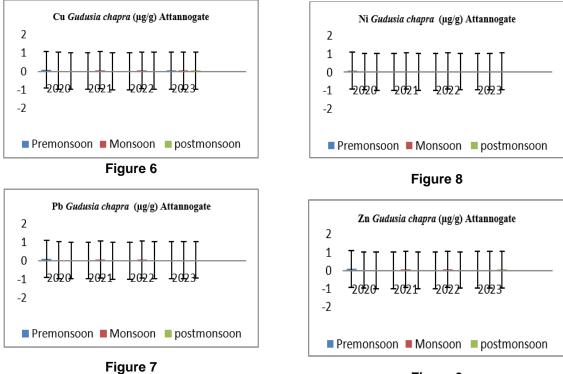


Figure 9

Figure 6 - 9: Shows the metal content in Gudusiachapra atAttannogate

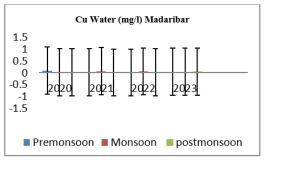
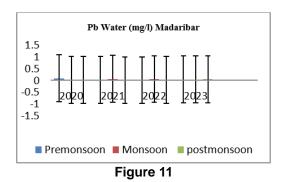



Figure10



Sarkar Fish Species Diversity of the Lower River Damodar and Pollution Effects

Figure 13

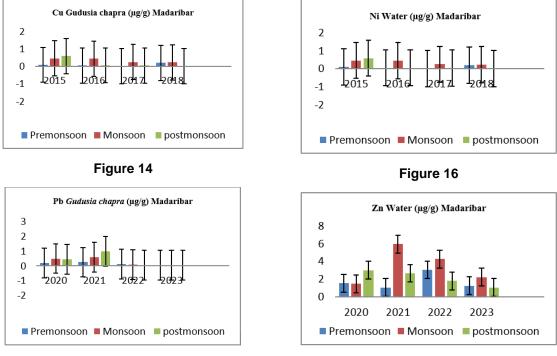


Figure 17

Figure 14 – 17: Shows the Metal Content in Gudusia chapra at Madaribar

Figure 2 – 17: Shows the Metals Content of Water and Gudusia chapra fish at Attannogate

Sarkar Fish Species Diversity of the Lower River Damodar and Pollution Effects

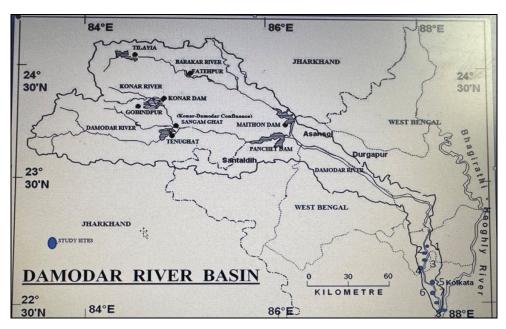


Figure 18: Map showing the study sites

Results and Discussion

The fishes studied from the lower stretch of the Damodar Riverbelong to 24 families, 13 Orders, 49 Genera and 65 Species (Table 3). Among these fishes the most dominant species belongs to the Order Cypriniformes(21%), followed bv Siluriformes(14%), then Clupeiformes, and Anabantiformes (12%), followed by, Gobiliformes (9%), Perciformes (8%), Pleuronectiformes and Mugiliformes(6%), Synbranchiformes (5%) Anguliformes(3%) Aulopiformes(2%) and the least Osteoglossiformes and Beloniformes(1%) (Figure 2). The present study reveals that the area of Damodar River beyond lock gate specially, Attannogate and Garchumuk houses a good number of estuarine fish species like Harpadon nehereus, Chelon parsia, Valamugil buchanani, Apocryptes bato, Apocryptodon madurensis, Setipinna phasa, Gonialosa manmina, Gudusia chapra. Synaptura albomaculata, Cynoglossus macrostomus, Cynoglossus lingua, Cynoglossus arel, which also shows restricted distribution in the area. Records from fish landing stations revealed that those fish were transported not only to local market but also to Bihar and Orissa fish market. The statistical analysis of the fish collection data reveals that the Highest Species richness 89 was found during the year 2021 in S2, S4 showed Highest Species richness 89 during the years 2021,2022,2023 and S7 and S8 showed Highest Species richness 89 during the all the study years (Table 2). This similarly in species richness (Table 2) in those study sites may be due to the similar aquatic conditions in all those study sites also may be due to similar nutrient available (Habit et al., 2006; Das et al., 2004). The Shannon diversity index indicates the relative abundance of the fish species, it shows

Sarkar Fish Species Diversity of the Lower River Damodar and Pollution Effects

almost similar pattern throughout study period(Table 2).Shelke(2023);Nelson, Grande and Wilson(2016); Chatla and Padmavathi (2021) revealed that the water quality of a river had immense effect on the diversity and distribution of ichthyofaunal status of the river.The present study indicates that the hydrological data(Table 1.) of the study sites varies within narrow range and that might be the cause of similar pattern of Shannon diversity index (Table 2) analysed for this study.

According to Khobragade and (2016) the food security of the society in terms of fishery can be established with the help of proper research information and regular survey of the ichthyofaunal diversity of the river confluence zone. Not only that, but it will also serve the conservation of the fish resource of the river system as well. Malik *et al.* (2021) revealed the fish faunal diversity of River Ganga in the upper basin might be the cause of seasonal nutrient variation, but the present study showed no such variation. During the present study the ichthyo species composition shows a larger number of estuarine fishes than the freshwater fishes in comparison to the study of Sarkar and Banerjee, 2012.

The toxic metals in river water are the major source of heavy metal contamination in aquatic vertebrates Elinge *et al.* (2019). The fish *Gudusia chapra* was selected for metal analysis as this fish was collected from all collection sites and found to be the most abundant species and a good food fish. The study of Heavy metals in river water (Figure 1-4 and Figure11-14) and the muscle tissue (Figure 7-10 and Figure 15-18) shows that the level of the metals was within acceptable limit according to(WHO, 2008; CPCB, 2011). The result reveals that concentration of heavy metals in muscle of *Gudusia chapra* sampled from all stations does not exceed the acceptable level for food sources for human consumption (WHO, 2008).

Conclusion

The present study indicates that Damodar River confluence area where Damodar joins the Hooghly River shows a high salinity in average during all the seasons because of the influence of high tide from Bay of Bengal through the Hooghly River. The species composition shows a larger number of estuarine fishes than the freshwater fishes. The salinity of the water at Garchumuk and Silampur was higher than the average freshwater salinity. The increased salinity and inflow from lock gate might have increased the estuarine species diversity. The fingerlings of some estuarine fish species were found at Santhoshpur, Bikunthapur, Deulpara,Garchumuk, Silampur and Madaribar as well during the post monsoon season. Thus, a detailed long-term investigation of the lower Damodar River fish diversity is required to protect and conserve the available fish species by taking effective measures. This will serve the fish-eating population of us well as the neighbor state as well.

Sarkar

Fish Species Diversity of the Lower River Damodar and Pollution Effects

Acknowledgement

The author is thankful to the Principal Sree Chaitanya College, West Bengal, India for providing funds for the present work and extending Laboratory facility.

References

American Public Health Association. (1926). *Standard methods for the examination of water and wastewater* (Vol. 6). American Public Health Association.

Chatla, D., & Padmavathi, P. (2021). Fish diversity of coastal Andhra Pradesh, southeast coast of India. *Advances in Animal and Veterinary Sciences*, *9*(9), 1424-1436. <u>http://dx.doi.org/10.17582/journal.aavs/2021/9.9.1424.1436</u>

CPCB. (2011). Status of Water Quality in India 2011. Central Pollution Control Board. https://nwm.gov.in/sites/default/files/waterwiki/1.pdf

Day, F. (1888). The Fishes of India: Being A Natural History of the Fishes Known to Inhabit the Seas and Fresh Waters of India, Burma, and Ceylon, 1, 112

Das, P., De, S. P., Bhowmick, R. M., Nandy, A. C., Pandit, P. K., Sengupta, R. C., &Thakurta, S. C. (2004). Diminishing trend of fish species diversity in West Bengal: field study. *Fishing Chimes*, *24*(1), 73-78.

Elinge, C. M., Obaroh, I. O., Muhammad, A., Yanah, Y. M., & Abdullahi, L. Y. (2019). Determination of some heavy metals in three selected Fish species from river Zamare, Nigeria. *International Journal of Fisheries and Aquatic Studies*, 7(4), 385-387. https://www.fisheriesjournal.com/archives/2019/vol7issue4/PartF/7-4-28-569.pdf

Fricke, R., Eschmeyer, W. N., & Van der Laan, R. (2018). Catalog of fishes: genera, species, references. *California Academy of Sciences, San Francisco, CA, USA http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp*

IUCN. (2021). *The IUCN Red List of Threatened Species*. International Union for Conservation of Nature's Red List. <u>https://www.iucnredlist.org/</u>

Jayaram, K. C. (2010). *Freshwater fishes of the Indian region*. 2nd Edition. Narendra Publishing House, Delhi. <u>https://www.nphindia.com/book/9788190795210/the-freshwater-fishes-of-the-indian-region-2ed</u>

Khobragade B,Lipokrenba. (2016). Ichthyofaunal diversity at the confluence of Pravara and Godavari Rivers (MS) India. *Journal of Entomology and Zoology Studies, 4*(2), 511-516. <u>https://www.entomoljournal.com/archives/2016/vol4issue2/PartG/4-2-56-295.pdf</u>

Nelson, J. S., Grande, T. C., & Wilson, M. V. (2016). *Fishes of the World*. John Wiley & Sons.<u>https://doi.org/10.1002/9781119174844</u>

Sarkar, L., & Banerjee, S. (2012). *Diversity and Distribution of Fishes in Damodar River System* (*India*): *In Relation to Hydrological Variation and Anthropological Stress*. LAP LAMBERT Academic Publishing.

Shelke A. D. (2023). Fish Diversity of Nagad Dam, Taluka - Kannad, Dist. Aurangabad, Maharashtra, India. *Journal of Emerging Technologies and Innovative Research (JETIR), 10*(3), 630-635.<u>https://www.jetir.org/papers/JETIR2303481.pdf</u>

Talwar, P. K., & Jhingran, A. G. (1991). *Inland fishes of India and adjacent countries* (Vol. 2). CRC press.

Sarkar

Fish Species Diversity of the Lower River Damodar and Pollution Effects

Malik, D. S., Sharma, M. K., Sharma, K., & Sharma, A. K. Status of fish diversity and their Habitat Ecology in the upper Ganga Basin, Uttarakhand.<u>http://www.envirobiotechjournals.</u>com/EEC/v27FebSupplIssue2021/EEC-34.pdf

Habit, E., Belk, M. C., Cary Tuckfield, R., & Parra, O. (2006). Response of the fish community to human-induced changes in the Biobío River in Chile. *Freshwater Biology*, *51*(1), 1-11. https://doi.org/10.1111/j.1365-2427.2005.01461.x

World Health Organization. (2008). Guidelines for drinking-water quality: second addendum.Vol.1,Recommendations.https://iris.who.int/bitstream/handle/10665/204412/9789241547604_eng.pdf