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ABSTRACT 

Millions of compounds have been found in literature that show solvatochromic shift in 
absorption and /or emission spectra due to hydrogen bonding. Almost all of them are 
sensitive to the polarity of the medium as well. A large number of fluorophores show 
quenching of emission intensity on hydrogen bonding, while in case of a few increments in 
fluorescence is observed. However a hydrogen bonding probe, Dibenzo [a,c] phenazine, 
that cannot sense the polarity of the environment, has been reported which is unique in this 
respect. This probe can determine only the hydrogen bonding donating capacity of a solvent 
irrespective of its polarity. 
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Introduction 

Hydrogen bonding (HB) has been key of interest for more than a century due to its 
importance and prevalence in numerous biological structures and reaction pathways. The 
unique properties of water, as solvent and biological medium, are due to the tetrahedral 
hydrogen bond network. However recent theoretical studies reveal that hydrogen bond is 
not present in supercritical water (Schienbein & Marx, 2020). Especially in biological 
sciences, it is perhaps the most abundant weak chemical interaction. It is involved in three-
dimensional structure of DNA, RNA, secondary structure of proteins etc and mechanistic 
pathway of many enzyme catalysed reactions. Isotope-edited IR spectroscopy has recently 
been used to probe the HB environment of individual bases in DNA duplexes (Fick et al., 
2021). Even atmospheric chemistry use HB network as a probe to characterise the nature 
of glycerol-water aerosols (Weeraratna et al., 2021). The identification of these interactions 
are manifested on the photophysical properties of the fluorophores involved there in. 
However, HB can broadly be classified into two categories: a) ground state HB in and b) 
excited state HB. The HB interaction of any fluorophore both in ground and excited state 
can be identified by solvatochromic effect on absorption and fluorescence spectra. This 
implies that depending on nature of the solvent, whether it is polar / nonpolar and protic / 
nonprotic, the peak position, shape and intensity changes. 
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In high school studies, students learn about HB as an electrostatic interaction between a 
hydrogen atom, which forms a covalent bond with an electronegative element such as N, O, 
or F and another electronegative element that may be Cl, Br etc. The first hydrogen atom is 
known as hydrogen bond donor and the later electronegative atom is called hydrogen bond 
acceptor. HB can be inter- or intra- molecular, that change various physic-chemical 
properties of a molecule viz. melting point, boiling point, acidity, basicity etc. 

 Although the charge separation and consequently the charge distribution were first 
identified in the ground state (S0), sometimes the effect is enhanced in the excited state (S1, 
S2 ...). The change in the charge distribution pattern is reflected by an enhancement of 
dipole moment in the excited state (μe) compared to ground state (μg). This is called intra-
molecular charge transfer. Molecules showing such transition contain distinct donor (D) and 
acceptor (A) moieties. The highest occupied molecular orbital (HOMO) is mainly localised 
on D and lowest unoccupied molecular orbital (LUMO) has mainly acceptor character 
(Rohatgi-Mukherjee, 1978).   

 When solvent interaction comes into effect, the situation becomes a bit complicated. 
Two cases may arise: 

Case I: If μg < μe, change from a nonpolar to a polar solvent increases the solvent 
interaction and get greater stabilisation in the excited state, resulting in a bathochromic or 
red shift of absorption spectra. Such characteristics are observed for π→π* transitions, as 
the charge separation occurs in an enhanced region (figure 1). 

 

Figure 1: Energy Level Rearrangement on Solvation (Rohatgi-Mukherjee, 1978)   

Case II:  If μg > μe, the ground state is more stabilised in polar solvents. For n→π* 
transitions, non-bonding lone pair of an heteroatom like N, O remain hydrogen bonded in 
the ground state. This gives more stability to ground state and excited state is not much 
stabilised as promotion of nonbonding electrons to π* orbital reduces the hydrogen bonding 
forces in the excited state. This results in a hypsochromic shift in changing from nonpolar to 
a polar solvent (figure 1).   
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Types of HB 
Conventionally two kinds of HB are possible: in-plane HB and out of plane HB. In-plane HB 
is the classical type of HB that occurs with the non-bonding lone pair of any donor and 
electron deficient hydrogen atom. While out of plane HB occurs with the π* orbital of the 
donor that is perpendicular to the molecular plane. Theoretical studies revealed that these 
two kinds of HB with a same fluorophore vary in HB length and also HB strength. Beside the 
classical HB, recently π-hydrogen bonding used as a probe to understand the reactivity of 
differently substituted benzenes towards nitration (Galabov et al., 2019). 

DISCUSSION 
Simultaneous Polarity and Hydrogen Bond Sensor 
In literature millions of compounds are there that can sense the dielectric of the solvent 
involved. They are used in various unknown environments to detect the polarity. These 
polarity probes may behave differently when kept in protic environment. For some 
compounds the emission intensity decreases in protic medium while some compounds 
show enhanced fluorescence (Han & Zhao, 2011).  

Fluorescence Quenching on Hydrogen Bonding 
There are several classes of compounds and their derivatives that are found to be very 
suitable for analysing solute-solvent interactions in the ground and excited state. Few of 
them are listed in Table 1. The compounds listed are sensitive to polarity of the solvent and 
mostly show red shift on switching from nonpolar to polar solvent. In presence of polar 
protic solvents, HB occurs even in the ground state. On photoexcitation that HB strength 
may increase or decrease  

Table 1: Structure of Different Fluorophores Showing Quenching on Hydrogen 
Bonding (Han & Zhao, 2011) 

 
Sceletal fluorophore Structure 

Indole derivatives (eg. Tryptophan) 

N  

Carbazole derivatives N
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Diazines: pyridazine, pyrimidine, pyrazine 
 
 
 

 
 

depending on the nature of the compound. In most of the reported cases the emission 
intensity decreases in protic solvents due to predominant non-radiative transition from S1 
state as it becomes more stable. The HB in protic solvents induces internal conversion and 
hence quantum yield decreases. 

Fluorescence Enhancement on Hydrogen Bonding 

There are some compounds where HB with the fluorophore enhances the fluorescence 
(figure 2). The proposed mechanism suggests that internal conversion and intersystem 
crossing, both nonradiative channels are stopped. This mechanism named ‘close proximity 
effect’ happens if the first two excited states (singlet as well as triplet) are very close apart 
due to their structure. On changing to polar protic solvents the energy states interchange 
their positions. In nonpolar solvents the nπ* state was the first excited singlet state, having 
lower quantum yield. After rearrangement of the energy levels the ππ* becomes the S1 and 
hence fluorescence quantum yield increases (Han et al., 2008; Sikorska et al., 2004).      

N

N

NH

N
H

O

O  

Figure 2: Compounds having increased fluorescence on hydrogen bonding (Han et 
al., 2008; Sikorska et al., 2004) 
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Polarity Insensitive Hydrogen Bonding Probe  

The fluorescent probes discussed above are unable to differentiate between dielectric of the 
medium and its hydrogen bonding capacity. A very few probe, viz, dibenzo[a,c]phenazine 
(DBPZ) (figure 3) (Dey  et al., 2007) have been proved to sense only the HB donating 
capacity of the solvent . The precursor phenazine molecule exhibits almost no change in 
absorption spectra with different solvents of varying polarity and hydrogen bonding capacity.  

N

N

 

Figure 3: Dibenzo[a,c]Phenazine: Polarity Insensitive Polarity Probe (Dey  et al., 2007) 

Phenazine shows only ~ 30nm blue shift in fluorescence spectra in water compared to 
acetonitrile. This indicates that the first excited singlet state of phenazine is of nπ* character 
(Choudhury & Basu, 2005). The fluorescence maxima of phenazine remains same in 
acetonitrile and in ethanol but only quantum yield increases in the later. Thus, the parent 
phenazine molecule is not very much informative about the dielectric and the hydrogen 
bonding capacity of its environment. Beside this there are quite a large number of small 
organic molecules that show significant variation in their dipole moments on photoexcitation 
and hence may be used as a polarity sensor (Aaron et al., 1995; Carvalho et al., 2000). 

However, DBPZ is such a molecule that has unchanged absorption spectra in solvents of 
different polarity, e.g. cyclohexane (ε ~2), acetonitrile (ε ~37), methanol (ε ~24) and up to a 
certain concentration of water (ε = 80). In cyclohexane and acetonitrile, having widely 
different polarity, the fluorescence maxima and the fluorescence quantum yield of DBPZ 
show no change. This observation leads to the conclusion that DBPZ cannot sense the 
polarity of its surrounding environment. However, emission spectra of DBPZ change 
drastically in hydrogen bond donating solvents. The fluorescence maximum shows 
bathochromic shift with increase in quantum yield as the hydrogen bond donating capacity 
of the medium increases. These spectroscopic changes are function of the hydrogen bond 
donating capacity of the solvents and also the steric effects around the hydrogen bonding 
site. Though trifluoroethanol has greater hydrogen bond donor capacity than water, (Kamlet 
et al., 1983) water shows higher quantum yield as it can approach towards the probe more 
easily, due to its smaller size than the bulkier trifluoroethanol.  

The dipole moment of DBPZ is much greater in first excited singlet state compared to the  
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ground state. So hydrogen bond in the excited state is much stronger than in the ground  
state. However the molecule remains insensitive to the environment polarity due to its 
peculiar structure. The two bulky phenyl rings in ‘a’ and ‘c’ position make the lone pair of the 
phenazine nitrogens inaccessible to solvents. Only small hydrogens of the solvent can 
interact with the lone pair of the nitreogen and build hydrohen bond. This can be proved 
from 1H NMR study (Dias & Liu, 1990). Excited state hydrogen bonding is reflected from the 
shortening of hydrogen bond length in the higher state (Parthasarathi, Subramanian & 
Sathyamurthy, 2006). 

Conclusion 

Although hydrogen bonding is the most fundamental weak force active in biological 
medium, most of the probes used to detect hydrogen bonding is also affected by the polarity 
of the medium. Thus, the photochemical properties shown by those probes are blended with 
both dielectric and hydrogen bonding capacity of the medium. However 
Dibenzo[a,c]phenazine is reported to be the polarity insensitive hydrogen bonding probe. 
The structure of the molecule makes the lone pair of nitrogen unavailable to other atoms 
except hydrogen.  
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