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Abstract 
Methodological advances and their mathematical applications are a progressive field of 
study in the area of electronic structure theory dominated by molecular systems having 
‘quasidegeneracy’. The recently proposed Improved Virtual Orbital State Specific Multi 
Reference Perturbation Theory (IVO-SSMRPT) has been progressively developed into an 
advantageous ab initio instrument for analysing electronic states with systems prone to static 
and dynamic electronic correlations.  This method is an alluring substitute to the broadly 
used MRPT methodologies and it can dodge various challenges faced by the traditional 
MRPTs. Even at the twisted molecular levels, IVO- Brillouin-Wigner (BW)- MRPT provides 
a dependable picture of quasi-degeneracy among occupied and unoccupied orbitals. The 
competence of IVO-SSMRPT has been explored here using highly correlated electronic 
systems impending from isomerization of diphosphorous compounds.  IVO-SSMRPT 
method mimics the findings of modern age state-of-the-art methods but with depreciated 
computational accomplishment. 
Keywords: Ab Initio Methods; Barrier Height; Improved Virtual Orbitals; Isomerization 
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Introduction 
Theoretical study of molecular systems having two phosphorus atoms is an arduous 
assignment. Analysis of these molecular systems turns into an important subject due to the 
miscellaneous utilizations in material science.  The reactivity of diphosphenes is always an 
appealing dispute for both the branches of experiment and theory. It calls attention to the 
synthetic chemists as they are responsive to a diverse spectrum of reagents (Geoffroy et al., 
1992; Binder et al., 1996; Ito et al.,1986; Shah et al., 2000).  Diphosphenes are more inclined 
to reduction process than olefins or other azo compounds (Ito & Nagase,1986). 
Unique photochemical behaviours shown by both diphosphines and diphosphinylidene are 
worth exploring in divergent field of organometallics (Pikies et al., 2004). Even, PP bonded 
molecular systems have been efficiently used in chemical hydrogen storage (Matus et al., 
2007). The chemical isolation process of these species is a tricky job as they have 
tendencies to polymerization due to thermodynamic control (Shah et al., 2000).  Over the 
last few years, P=P compounds have been combined into their conjugated counterpart to 
make constituent elements of molecular electronics. It is worth mentioning that for 

138



MRPT Analysis of Diphosphorous Isomers 

Converging Chemical and Biological Sciences for a Sustainable Era 

diphosphene like systems, the PP bond distance remains in the range of 2.00 to 2.034 Å 
and it bears harmonic vibrational frequencies around 610 cm-1.  These signify the existence 
of a P=P double bond (Weber, 1992; Tokitoh, 2000; Hamaguchi et al., 1984).  Attempts have 
been made to study the diphosphene and diphosphinylidene class of compounds 
theoretically (Matus et al., 2007; Ito & Nagase,1986; Tongxiang et al., 2009; Allen et al., 
1986; Lu et al., 2010; Vogt-Gessie & Schaefer III, 2012; Allen et al., 1990). 
A depiction of the isomerization pathways of the quintessential P-P bonded compounds like 
diphosphinylidene (PPH2) and diphosphene (HPPH) was extensively studied using IVO-
SSMRPT formulation with minimal model space (Sinha Ray, 2020).  Particular emphasis 
was granted to study both the transition states (TS) of two distinct isomerization pathways. 
The portrayal of electronic framework of TSs is usually tormented by quasidegeneracy, 
possessing various leading components in the total wave function. Thereby, the single 
reference method fails abruptly. The transition states highly need a MR study in a more 
notable pathway than the ground states. T1 diagnostic test of Coupled cluster method (Lee 
& Taylor, 1987) shows a moderate MR character of cis and trans HPPH. Higher T1 value of 
PPH2 demonstrates higher MR nature. Maximum value of the T1 diagnostic indicating 
highest MR character is due to TS between trans HPPH and planar PPH2. Among the 
broadly applied MR methodologies, MRPT is at the arena of the techniques of selection 
(Chatttopadhyay et al., 2016). Complete Active Space Self Consistent Field (CASSCF) is an 
extensively used technique to build up the unperturbed basis function in MR-correlated 
computations like SSMRPT method as primarily introduced by Mukherjee and co-workers 
(Sinha Mahapatra, 1999; Evangelista et al., 2009). 
But CASSCF frequently attracts problems like convergence failure, multiple solution etc. A 
substitute to this problem has been developed as IVO-SSMRPT method (Sinha Ray et al., 
2016; Sinha Ray et al., 2017) and it has been widely accepted in electronic structure theory. 
Study on trans- and cis-HPPH and planar PPH2 systems with IVO-SSMRPT (Sinha Ray, 
2020) is worth mentioning in this context.  Results due to other state-of-the-art methods like 
State specific Multi Reference Coupled Cluster (SS-MRCC aka Mk-MRCC) (Mahapatra et 
al., 1998; Evangelista et al., 2006; Evangelista et al., 2007), Coupled Cluster Single Double 
and perturbative Triple (CCSD(T)) and Multi Reference Configuration Interaction 
(MRCI) and values are available due to the work of Schaefer and co-workers (Tongxiang et 
al., 2009; Allen et al., 1986). 
Results and Discussion 
Correlation consistent quadruple zeta valence (cc-pVQZ) basis (Dunning Jr, 1989) has been 
used and have been implemented from the EMSL database (https://bse.pnl.gov/bse). CAS 
(m,n) expresses ‘m’ number of electrons, which are distributed in ‘n’ number of orbitals. For 
all IVO-SSMRPT cases, CAS(2,2) space has been utilised. 
Trans-HPPH:  Figure 1 reveals the optimized geometries of trans HPPH molecule.  The 
structure is C2h   having 1Ag symmetry. Due to the presence of bond between two 
phosphorous elements, its molecular framework like the P-P bond nature is appealing 
(Power, 2004). P-P bond length lies in the range of 2.024 Å to 2.054 Å. CAS(2,2) consists of 
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highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital 
(LUMO) having symmetries of au and bg respectively [see Figure 4].  

Figure 1: Geometrical Parameters 
of the Trans HPPH. Bond Lengths 
are in Angstroms (Å) and Angles are 
in Degrees (°)(Sinha Ray, 2020) 

Figure 2: Geometrical Parameters 
of the Cis HPPH. Bond Lengths are 
in Angstroms (Å) and Angles are in 
Degrees (°) (Sinha Ray, 2020) 

Cis-HPPH: Cis isomer of diphosphene has been optimized at A1 symmetry of C2v point 
group [see Figure 2]. The IVO-SSMRPT values are in well accord with the CCSD(T), 
MRMP2, Mk-MRCCSD and MRCI studies. The P-P bond length increases significantly from 
the trans isomer.  Figure 4 describes the 2b1 (𝜋𝜋) as HOMO and the 2a2 (𝜋𝜋∗) as LUMO of the 
cis isomer. 

Figure 3: Geometrical Parameters 
of the Planar PPH2. Bond Lengths 
are in Angstroms (Å) and Angles 
are in Degrees (°) (Sinha Ray, 2020) 

Figure 4: HOMO and LUMO of 
(a) Trans HPPH, (b) Cis HPPH
and (c) Planar PPH2 (Sinha Ray,
2020)
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Diphosphinylidene (planar PPH2): Another type of bonding pattern is shown in PPH2 having 
1A1 symmetry at planar C2v structure [see in Figure 3]. Here the P-P bond length is much 
shorter than both the cis and trans diphosphene anticipating a strong double bond nature. 
This structure also displays a greater dipole moment than the cis counterpart. HOMO and 
LUMO are b2 and b1 respectively. 
TS connecting trans HPPH and planar PPH2:This TS is found to be of singlet in nature 
having C1 symmetry [Figure 5]. Analogous molecular prototypes like NPH2 and SCH2 show 
prominent 1,2 hydrogen shift (Nguyen & Ha,1989). In the TS, it is proposed that the migrating 
hydrogen atom behaves like a proton. The P1P2H2 angle is calculated at 47.45 degree by 
IVO-SSMRPT which is almost half of the trans isomer (i,e, 93.55 degree) confirming the 
migration of the H atom (marked as H2) over the P-P bond and also formation of a three-
centered bond as also predicted by Schaefer III and co-workers (Tongxiang et al., 2009). 
TS connecting trans and cis HPPH:Trans-cis conversion of HPPH can be reached via 
two discrete pathways – torsional movement about P-P bond and the inversion via a linear 
P-P-H bond. First process is accepted due to the lower energy barrier. The TS is analysed
to be in a singlet state with C2 symmetry. The dihedral angle is found to be around 90 degree
[see Figure 6] which indicates the halfway between trans and cis minima.

Figure 5: Geometrical Parameters of 
the TS between the Trans HPPH and 
Planar PPH2 Isomers. Bond Lengths 
are in Angstroms (Å) and Angles 
are in Degrees (°) (Sinha Ray, 2020) 

Figure 6: Geometrical Parameters of 
the TS between the Trans and Cis 
HPPH Isomers. Bond Lengths are in 
Angstroms (Å) and Angles are 
in Degrees (°) (Sinha Ray, 2020) 

Relative energies and Barrier height:   Geometrical optimization confirms that the trans 
HPPH has the lowest energy among all the isomers. In Table 1 the relative energies of other 
minima are represented. The ‘gold standard’ of quantum chemistry, CCSD(T) method 
indicates the geometrical isomerization energy to be 3.38 kcal/mol as compared to the 3.85 
value of IVO-SSMRPT. 

141



MRPT Analysis of Diphosphorous Isomers 

 Converging Chemical and Biological Sciences for a Sustainable Era 

 

For structural isomerization alleyway between trans HPPH to planar PPH2, the required 
energy is 24.89 which is in close proximity with the CCSD(T) estimate of 25.28 kcal/mol.  
Table 1 : Relative Energies (in kcal/mol) of Different Local Minima as Compared to 
Global Minimum (trans-HPPH) Reflected by Different Level of Methods (Sinha Ray, 
2020). 

Method Basis set ΔEcis ΔEplanar 
IVO-SSMRPT cc-pVQZ 3.85 24.89 

CCSD(T) cc-pVQZ 3.38 25.28 
Mk-MRCCSD cc-pVQZ 3.32 --- 

MRCI aug-cc-pVTZ 3.34 --- 

Table 2 : Energy Barriers (in kcal/mol) of Geometrical and Structural Isomerization 
Depicted Via Different Level of Methods (Sinha Ray, 2020) 

Method Basis set TS between 
trans HPPH and 

Planar PPH2 

TS between trans 
HPPH and cis 

HPPH 
IVO-SSMRPT cc-pVQZ 51.00 39.96 

CCSD(T) cc-pVQZ 50.50 35.19 
Mk-MRCCSD cc-pVQZ --- 35.19 

MRCI aug-cc-pVTZ ---- 35.05 

The energy barriers related to two disparate isomerization pathways are furnished in Table 
(2). Trans HPPH to planar PPH2 has a potential barrier of around 50 kcal/mol whereas the 
energy barrier for HPPH to cis HPPH is predicted around 35 kcal/mol. The geometrical 
isomerization is assuredly more attainable having lower barrier height. 
Conclusion  
IVO-SSMRPT deals with the two distinct isomerization paths of molecules involving two 
phosphorus atoms. Isomerization energy and barrier height by IVO-SSMRPT have been 
computed and correlated with many other refined ab initio approaches. The work paves the 
way to the use of the very promising perturbative protocol i.e. IVO-SSMRPT with very low 
computational cost towards the simulation of isomerization pathways containing systems 
with arbitrary interplay of static and dynamic electron correlation effects.  
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