
doi: 10.31674/book.2025ccbsse012 

Converging Chemical and Biological Sciences for a Sustainable Era 

 

Non-Adiabatic Escape Rate of a Quantum Dissipative 
System from a Rapidly Oscillating Periodic Potential 
Anindita Shit 
Department of Chemistry, Kandi Raj College, Kandi, Murshidabad 742137, West Bengal, 
India 
Corresponding Author’s E-mail: anindita.pchem@gmail.com 

Abstract 
Escape rate under the influence of a high-frequency field has appeared as a theme of topical 
interest in different variants of the kinetic model of chemical and biological phenomena over 
more than two decades. The escape rate of a quantum system modulated by a rapid, time-
periodic external force is studied here in the presence of environmental dissipation with the 
effect of the foundational process of the intricate interplay of the temperature, field and the 
system parameters on the escape rate profile with the help of the modified Langevin 
equation obtained by systematically expanding in terms of (1/ω) via perturbative methods 
using the Kapitza−Landau time scale and quantum gauge transformation in the frame of the 
Floquet theorem.  Present formalism, which is classical in appearance yet quantum in 
nature, provides the full time-independent activated escape rate that often plays a pivotal 
role in different processes and phenomena ranging from diffusion in condensed phases to 
biological and chemical reactions. This work, therefore, furnishes avenues of controlling 
such escape rates in realistic systems of arbitrary complexity and generality. 
Keywords: Effective Potential; Langevin Equation; Multiple Scale Perturbation Analysis; 
Path Integral Formalism; Quantum Dissipative Systems 

Introduction 
In the field of physical, biological and chemical sciences, the system-reservoir model is a 
broadly acknowledged concept which is capable of explaining a plethora of phenomena. 
Thus, comprehending this model is inherently significant. The analysis of such systems 
becomes difficult due to the perturbation that varies over time. Usually when the system is 
driven by slow external perturbation, it remains in equilibrium with the potential with no time 
lag, but the situation becomes tricky when the external disturbance becomes periodic with 
higher field frequencies. A comprehensive methodology has not been established in existing 
studies to get insights into such dynamics (Jung 1993, Reichl & Kim 1996, Jülicher, Ajdari & 
Prost 1997, Doering & Gadoua 1992, Gammaitoni et al., 1998, Reimann, Grifoni & Hänggi 
1997, Reimann 2002). Thus, the investigation of responses of a system to rapid periodic 
external forces is crucial in the field of chemical dynamics in condensed matter. The 
dynamics of the non-equilibrium system are complex and varied, as substantial deviations 
from the Boltzmann distribution can arise, giving rise to effects that may appear partially 
counterintuitive. Generally, when a particle is exposed to an external time-dependent drive, 
its escape rate from a metastable state is also found to be time- dependent. Thus, one of 
the main challenges lies in determining the escape rate. Studying escape rate offers a 
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deeper understanding of the system's overall dynamics as in an escape process where the 
system moves over its metastable state. 
Literature Review  
The most fundamental theory for studying such dynamical processes is the theory of the 
Brownian motion. The classical theory of Brownian motion which involves either Langevin 
equation (Coffey et al., 2004) or  Fokker−Planck equation (Risken 1989) is well-recognised 
but analysis for similar quantum systems are still absent as quantum dissipation involves a 
more intricate formulation compared to classical dissipation (Gammaitoni et al., 1998, Coffey 
et al., 2004, Coffey, Kalmykov & Waldron, 2004, Luchinsky, McClintock & Dykman, 1998, 
Weiss 2012, Hänggi, Talkner & Borkovec, 1990, Hänggi & Jung, 1995, Grabert, Schramm 
& Ingold, 1988, Hänggi & Ingold, 2005, Tanimura & Ishizaki, 2009, Coffey, Garanin & 
McCarthy, 2001, Coffey et al., 2013) Recently, the quantum mechanics of systems driven 
by rapid external perturbations has gained attention where the driving force becomes 
nonadiabatic. In the regime of high-frequency external perturbations, the notion of eigenstate 
transitions for the unperturbed Hamiltonian ceases to be applicable. Several methodologies 
have been proposed to incorporate quantum effects in a diffusion equation (Machura et al., 
2004, Łuczka, Rudnicki & Hänggi, 2005, Ford & O’Connell, 2006, Tsekov, 1995, Tsekov 
2007, Ankerhold, Pechukas & Grabert, 2001, Coffey et al., 2007a, Banerjee et al., 2002, 
Banerjee et al., 2004, Ghosh, Barik & Ray, 2007, Bhattacharya, Chattopadhyay & Ray 
Chaudhuri, 2009, Ghosh et al., 2010, Bhattacharya et al., 2009, Dillenschneider & Lutz, 
2009). The Wigner formulation is a valuable method for calculating quantum corrections to 
classical dissipation models(Leggett & Caldeira, 1983, Tanimura & Wolynes, 1991,Tanimura 
& Wolynes, 1992, Tanimura, 2006, and Tanaka & Tanimura, 2009, Tanaka & Tanimura, 
2010, Sakurai & Tanimura, 2011, Tanimura, 2012, Coffey et al.,2007a, Coffey et al., 2007b, 
Coffey, Kalmykov & Titov, 2007, García-Palacios & Zueco, 2004, García-Palacios, 2004). 
The Wigner space formulation of the hierarchy equations of motion has been shown to offer 
a useful approach for exploring diverse phenomena in several significant areas (Tanimura 
& Wolynes, 1991; Tanimura & Wolynes; 1992, Tanimura, 2006; Tanaka & Tanimura, 2009; 
Tanaka & Tanimura, 2010; Sakurai & Tanimura, 2011; Tanimura, 2012). Among the various 
approaches to modelling dissipation, the path integral formulation of quantum mechanics 
stands out for its effectiveness (Grabert, Schramm & Ingold, 1987; Grabert, Schramm & 
Ingold, 1988; Ingold, 1997; Ingold, 2002). Ankerhold, Pechukas and Grabert (2001) 
proposed a quantum extension of the Smoluchowski equation, originating from the precise 
path-integral method to reduced dynamics. This formulation offers structural flexibility to 
include higher-order quantum corrections in the original quantum Smoluchowski equation 
and has been implemented to a broad range of problems, encompassing the systems both 
with and without external perturbation (Ankerhold, 2004; Machura et al., 2006; Maier & 
Ankerhold, 2010). The chapter addresses the study of escape rates from a metastable 
potential well in the high-frequency modulation regime, where the frequency of modulation 
surpasses all other relevant system frequencies. Here multiple scale perturbation theory 
(MSPT) (Shit, Chattopadhyay & Ray Chaudhury, 2013; Orszag & Bender, 1978) is used in 
the framework of the traditional path integral approach in order to handle non-Markovian and 
nonsecular quantum system-bath interplay. Path integral formulation is often used to study 
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decay from a metastable state of a quantum system modulated by rapid periodic oscillation. 
Periodic modulation is easier to understand conceptually regardless of the range of the 
frequency variation. However, as the system is no longer in thermal equilibrium, calculation 
of the escape rate is more complex. This work seeks to explore the underlying mechanisms 
of internal noise (resulting from SB coupling) and external driving, and to understand their 
mutual interaction. The outcomes of this work may prove useful in the context of modelling 
cold atom control through electromagnetic field interactions. In recent years, Shit et al have 
proposed a perturbative framework for examining the classical and quantum motion of 
particles influenced by high-frequency fields, particularly when the nature of the driving force 
shifts to nonadiabatic (Shit, Chattopadhyay & Ray Chaudhuri, 2011; Shit, Chattopadhyay & 
Chaudhuri, 2012). In this chapter, it has been shown that, on timescales longer than the 
perturbation period, the (Langevin) dynamics can be represented by replacing the periodic 
perturbation with an effective potential which does not have any explicit time dependence. 
Successful applications to different physical problems showcase the effectiveness of this 
method. Although there are results (Lehmann, Reimann & Hänggi, 2000; Kim et al., 2010) 
that are precise when noise strength tends to zero, at elevated frequencies, the method fails 
to perform under fixed noise strength conditions. This regime is addressed in this chapter. It 
is crucial to recognise that many phenomena critically depend on activated escape, including 
diffusive processes in the solid-state materials and on their surfaces, as well as various 
chemical reactions. Consequently, finding methods to control escape rates is essential. 
Discussion 
The dynamics of quantum particles are studied here, which are acted upon by a fast-
oscillating periodic force using the Kapitza time window (that involves separating the 
system's variables into slow and fast components). This development facilitates solving the 
problem in the presence of friction and random forces. Let us begin with considering a 
system-reservoir Hamiltonian in the proposal by Zwanzig (2001), where the reservoir is 
represented by a collection of harmonic oscillators characterised by frequencies, masses 
and the system is subjected to a high-frequency periodic field. The model can be expressed 
by the following Hamiltonian: 

𝐻𝐻� = 𝐻𝐻�𝑆𝑆(𝑥𝑥�, 𝑝̂𝑝) + 𝐻𝐻�𝐵𝐵��𝑞𝑞�𝑗𝑗�, �𝑝̂𝑝𝑗𝑗�� + 𝐻𝐻�𝑆𝑆𝑆𝑆�𝑥𝑥�, �𝑞𝑞�𝑗𝑗�� 

= 𝑝𝑝�2

2𝑚𝑚
+ 𝑉𝑉�0(𝑥𝑥�) + 𝑉𝑉�1(𝑥𝑥�,𝜔𝜔𝜔𝜔) + ∑ �

𝑝𝑝�𝑗𝑗
2

2𝑚𝑚𝑗𝑗
+ 1

2
𝑚𝑚𝑗𝑗ω𝑗𝑗2 �𝑞𝑞�𝑗𝑗 −

𝑐𝑐𝑗𝑗𝑥𝑥�
𝑚𝑚𝑗𝑗ω𝑗𝑗

2�
2
� 𝑁𝑁

𝑗𝑗=1  (1) 

Here, x̂ and p̂ represent the position and momentum operators of the system, while 
��𝑞𝑞�𝑗𝑗�, �𝑝̂𝑝𝑗𝑗�� denote the sets of position and momentum operators for the bath oscillators. The 
confining potential is given by 𝑉𝑉�0(𝑥𝑥�) that the system would execute alone without any 
external drive, and 𝑉𝑉�1 represents the potential due to the external driving with period T whose 
time average over one period is zero: 

𝑉𝑉�1(𝑥𝑥�,𝜔𝜔(𝑡𝑡 + 𝜏𝜏)) =  𝑉𝑉�1(𝑥𝑥�,𝜔𝜔𝜔𝜔) (2) 

and 
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1
𝑇𝑇
� 𝑑𝑑𝑑𝑑
𝑇𝑇

0
𝑉𝑉�1(𝑥𝑥�,𝜔𝜔𝜔𝜔) = 0 

Following the customary approach of excluding the bath variables yields the quantum 
Langevin equation as  

𝑚𝑚𝑥𝑥�̇ + ∫ 𝑑𝑑𝑑𝑑′𝛾𝛾(𝑡𝑡 − 𝑡𝑡′)𝑥𝑥�̇(𝑡𝑡′)𝑡𝑡
0 + 𝜕𝜕𝑉𝑉�(𝑥𝑥�,𝜔𝜔𝜔𝜔)

𝜕𝜕𝑥𝑥�
= 𝜉𝜉(𝑡𝑡)        (3) 

where    𝑉𝑉� = 𝑉𝑉�0 + 𝑉𝑉�1    (4) 
and the damping kernel   𝛾𝛾(𝑡𝑡 − 𝑡𝑡′) = 1

𝜋𝜋 ∫ 𝑑𝑑+∞
−∞ 𝜔𝜔[𝐽𝐽(𝜔𝜔)/𝜔𝜔] cos𝜔𝜔 (𝑡𝑡 − 𝑡𝑡′)             (5) 

The fluctuation operator, 𝜉𝜉(𝑡𝑡) follows the fluctuation-dissipation relation. The bath's dual 
effects—fluctuation and dissipation—collaborate to uphold the system's thermal equilibrium 
in accordance with the fluctuation-dissipation theorem. 

〈𝜉𝜉(𝑡𝑡)𝜉𝜉(𝑡𝑡′) + 𝜉𝜉(𝑡𝑡′)𝜉𝜉(𝑡𝑡)〉 = ℏ∫ 𝑑𝑑𝑑𝑑
𝜋𝜋
𝐽𝐽(𝜔𝜔) coth � ℏ𝛚𝛚

2𝑘𝑘𝐵𝐵𝑇𝑇
� cosω(𝑡𝑡 − 𝑡𝑡′)+∞

−∞      (6) 

Here the initial configuration of the bath degrees of freedom is used to compute the average. 
The friction coefficient γ clearly depicts that energy is irreversibly lost from the system to the 
environment. Here the Ohmic regime (i.e., strict Markovian limit) is considered with the 
spectral distribution function J(ω) J(ω) = mγω which characterises the bath dynamics. In this 
context, γ reflects the correlation time of the bath-induced noise by characterising the 
spectral distribution width of the bath modes. It is to be mentioned here that the solutions of 
Eq. (3) are very complicated due to the involvement of time-dependent potential. It can 
typically be obtained numerically using various approximate methods. However, when the 
frequency of driving force is large and very large compared with all the other relevant system 
frequencies, a solution may be attainable, contingent on the type of problem being analysed. 
The force  𝐹𝐹�(𝑥𝑥,𝜔𝜔𝜔𝜔), due to the external time periodic field is given by: 

𝐹𝐹�(𝑥𝑥,𝜔𝜔𝜔𝜔) = −𝑉𝑉�1′(𝑥𝑥,𝜔𝜔𝜔𝜔) with ω ≫ 1
𝑇𝑇

  (7) 

Here the oscillation of the particle induced by the external time periodic force is considered 
to be very small so that the particle lacks sufficient time to respond before the periodic force 
switches direction i.e., the acceleration over one period is barely affected by the periodic 
force. As a result, it is beneficial to separate the motion of the particle into "slow" and "fast" 
components. The Hamiltonian in Eq. (1) is time periodic, i.e., [Ĥ (t + T) = Ĥ(t)]. Thus, the 
dynamical analysis of such systems can be possible by using Floquet theorem which 
enables the simplification of the periodic or quasiperiodic time-dependent Schrödinger 
equation into a system of time-independent coupled equations or a Floquet matrix 
eigenvalue problem (Grifoni & Hänggi, 1998). The Schrödinger equation is as follows: 

𝑖𝑖ℏ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝐻𝐻�𝜓𝜓   (8) 

The following Floquet states linked to their corresponding quasi-energies ε can be used to 
express solutions to Equation (8) as a linear combination: 
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𝜓𝜓𝜀𝜀 = �exp− 𝑖𝑖
ℏ
𝜀𝜀𝜀𝜀�𝕌𝕌𝜀𝜀(𝑥𝑥,𝜔𝜔𝜔𝜔)                                                                                                   (9) 

𝕌𝕌𝜀𝜀(𝑥𝑥,𝜔𝜔𝜔𝜔) denotes eigenstates of the Floquet Hamiltonian: 𝐻𝐻�𝐹𝐹 = −𝑖𝑖ℏ � 𝜕𝜕
𝜕𝜕𝜕𝜕
� + 𝐻𝐻�. This reflects 

the key idea of the Bloch–Floquet theorem applied to time-dependent systems. Here, 
𝕌𝕌𝜀𝜀(𝑥𝑥,𝜔𝜔(𝑡𝑡 + 𝑇𝑇)) = 𝕌𝕌𝜀𝜀(𝑥𝑥,𝜔𝜔𝜔𝜔) with ω = (2π/T). Floquet state has a “slow” part, �exp− 𝑖𝑖

ℏ
𝜀𝜀𝜀𝜀� 

(with the choice 0 ≤ ε/ℏ ≤ ω), which provides details regarding the quasienergies, and a “fast” 
part, 𝕌𝕌𝜀𝜀(𝑥𝑥,𝜔𝜔𝜔𝜔) that is solely dependent on the fast time τ = ωt. Thus, one can derive an 
equation of motion for the slow dynamics that encodes the system's quasienergies, with the 
necessary steps detailed as follows. Initially, a unitary gauge transformation exp(𝑖𝑖𝑇𝑇�(𝑡𝑡)), is 
aimed to be performed where 𝑇𝑇�(𝑡𝑡) is a Hermitian operator is periodic in time [𝑇𝑇�(𝑡𝑡 + 𝑇𝑇)= 𝑇𝑇�(𝑡𝑡)] 
with the same period as the Hamiltonian  𝐻𝐻�. This transformation removes the explicit time-
dependence from the Hamiltonian making it time-independent in the new gauge. The 
transformed time independent Hamiltonian helps in deriving the equation of motion for the 
"slow" component. Eq. (8), expressed in the new gauge with 𝜒𝜒 = exp(𝑖𝑖𝑇𝑇�(𝑡𝑡) )ψ, is now written 
as 

𝑖𝑖ℏ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝐻𝐻�𝑒𝑒𝑒𝑒𝑒𝑒𝜒𝜒                                                                                                                        (10) 

According to Floquet theory, χ has the same periodic behaviour as the Hamiltonian operator 
Ĥ and the Hermitian operator T̂. In the transformed gauge, χ represents a Floquet state 
characterised by the quasienergy ε. So, one may express the effective time-independent 
Hamiltonian as 

𝐻𝐻�𝑒𝑒𝑒𝑒𝑒𝑒 = exp(𝑖𝑖𝑇𝑇�(𝑡𝑡) )𝐻𝐻� exp�−𝑖𝑖𝑇𝑇�(𝑡𝑡)� +  𝑖𝑖ℏ �𝜕𝜕 exp(𝑖𝑖𝑇𝑇�(𝑡𝑡) )
𝜕𝜕𝜕𝜕

� exp(−𝑖𝑖𝑇𝑇�(𝑡𝑡) )                                       (11) 

The gauge transformation of Eq. (11) can be expressed in terms of fast time τ  

𝐻𝐻�𝑒𝑒𝑒𝑒𝑒𝑒 = exp(𝑖𝑖𝑇𝑇�)𝐻𝐻� exp�−𝑖𝑖𝑇𝑇�� +  𝑖𝑖ℏ𝜔𝜔 �𝜕𝜕 exp(𝑖𝑖𝑇𝑇�  )
𝜕𝜕𝜕𝜕

� exp(−𝑖𝑖𝑇𝑇�)                                                       (12) 

In the subsequent analysis, 𝑇𝑇�  is treated as a perturbative term of order ω−1 in the high-
frequency limit. Therefore,  𝐻𝐻�𝑒𝑒𝑒𝑒𝑒𝑒  and 𝑇𝑇� are expanded in powers of 1/ω as 

𝐻𝐻�𝑒𝑒𝑒𝑒𝑒𝑒 = ∑ 1
𝜔𝜔𝑛𝑛 𝐻𝐻�𝑛𝑛𝑒𝑒

∞
𝑛𝑛=0                                          (13) 

𝑇𝑇� = ∑ 1
𝜔𝜔𝑛𝑛 𝑇𝑇�𝑛𝑛

∞
𝑛𝑛=0                           (14) 

The choice of 𝑇𝑇� ensures that 𝐻𝐻�𝑒𝑒𝑒𝑒𝑒𝑒 remains independent of time, order by order. Thus, 𝐻𝐻�𝑗𝑗𝑒𝑒 64T is 
expressed in terms of 𝑇𝑇�1, 𝑇𝑇�2, …,𝑇𝑇�𝑗𝑗+1, after which 𝑇𝑇�𝑗𝑗+1 is selected such that  𝐻𝐻�𝑗𝑗𝑒𝑒  is rendered 
time independent. Using the operator expressions to compute the terms in Eq. (11), one can 
get 

exp(𝑖𝑖𝑇𝑇�)𝐻𝐻� exp�−𝑖𝑖𝑇𝑇�� = 𝐻𝐻� +  𝑖𝑖�𝑇𝑇� ,𝐻𝐻�� − 1
2!
�𝑇𝑇� , �𝑇𝑇� ,𝐻𝐻��� − 1

3!
�𝑇𝑇� , �𝑇𝑇� , �𝑇𝑇� ,𝐻𝐻���� + ⋯                           (15) 

and 
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𝜕𝜕 exp(𝑖𝑖𝑇𝑇�)
𝜕𝜕𝜕𝜕

exp�−𝑖𝑖𝑇𝑇�� = 𝑖𝑖 𝜕𝜕𝑇𝑇
�

𝜕𝜕𝜕𝜕
− 1

2!
�𝑇𝑇� , 𝜕𝜕𝑇𝑇

�
𝜕𝜕𝜕𝜕
� − 1

3!
�𝑇𝑇� �𝑇𝑇� , 𝜕𝜕𝑇𝑇

�
𝜕𝜕𝜕𝜕
�� + ⋯                (16)   

In the leading term, Ο(𝜔𝜔0), 𝐻𝐻�0𝑒𝑒  is described by 

 𝐻𝐻�0𝑒𝑒 = 𝑝𝑝�2

2𝑚𝑚
+ 𝑉𝑉�0(𝑥𝑥�) + 𝐻𝐻�𝑩𝑩 + 𝐻𝐻�𝑺𝑺𝑺𝑺 + 𝑉𝑉�1(𝑥𝑥�, 𝜏𝜏) − ℏ 𝜕𝜕𝑇𝑇�1

𝜕𝜕𝜕𝜕
               (17) 

𝑉𝑉�0, 𝑉𝑉�1, 𝐻𝐻�𝐵𝐵, and 𝐻𝐻�𝑆𝑆𝑆𝑆 do not depend on 𝑝̂𝑝  at all. For canceling the time dependence of 𝐻𝐻�0𝑒𝑒  , 
we choose 

𝑇𝑇�1 = 1
ℏ ∫ 𝑑𝑑𝑑𝑑′𝜏𝜏

0 𝑉𝑉�1(𝑥𝑥�, 𝜏𝜏′)                             (18) 

The integration constant is chosen as zero to get rid of the secular terms. Now, the 
substitution of Eq. (18) into Eq. (17) gives the leading order of the effective Hamiltonian 

𝐻𝐻�0𝑒𝑒 = 𝑝𝑝�2

2𝑚𝑚
+ 𝑉𝑉�0(𝑥𝑥�) + 𝐻𝐻�𝑩𝑩 + 𝐻𝐻�𝑺𝑺𝑺𝑺                                      (19) 

Using Eq. (12) the effective Hamiltonian can be expressed in the order ω−1as 

𝐻𝐻�1𝑒𝑒 = 𝑖𝑖�𝑇𝑇�1,𝐻𝐻�� − ℏ 𝜕𝜕𝑇𝑇�2
𝜕𝜕𝜕𝜕
− 𝑖𝑖ℏ

2
�𝑇𝑇�1, 𝜕𝜕𝑇𝑇

�1
𝜕𝜕𝜕𝜕
�                                           (20) 

As evident from Eq. (18), Since  𝑇𝑇�1 64T is exclusively dependent on x̂, so it will commute with its 
time derivative as well as with 𝑉𝑉�0, 𝐻𝐻�𝐵𝐵, and 𝐻𝐻�𝑆𝑆𝑆𝑆. Thus, 𝐻𝐻�1𝑒𝑒 = 𝑖𝑖�𝑇𝑇�1, (𝑝̂𝑝2 2𝑚𝑚⁄ )� − ℏ�𝜕𝜕𝑇𝑇�2 𝜕𝜕𝜕𝜕⁄ �. It is 
always possible to select 𝑇𝑇�2 to be periodic such that �𝜕𝜕𝑇𝑇�2 𝜕𝜕𝜕𝜕⁄ � = 𝑖𝑖 ℏ�𝑇𝑇�1, (𝑝̂𝑝2 2𝑚𝑚⁄ )�⁄ , leading 
to the vanishing of  𝐻𝐻�1𝑒𝑒 64T. Subsequently, 𝑇𝑇�2 64T is determined using Equation (18) and the 
coordinate representation of the momentum operator p̂ 

𝑇𝑇�2 = 𝑖𝑖
2𝑚𝑚 ∫ 𝜕𝜕𝜕𝜕𝜏𝜏

0 ∫ 𝜕𝜕𝜕𝜕𝑉𝑉�1"(𝑥𝑥�, 𝜏𝜏) + 𝑖𝑖
𝑚𝑚 ∫ 𝜕𝜕𝜕𝜕𝜏𝜏

0 ∫ 𝜕𝜕𝜕𝜕𝑉𝑉�1′(𝑥𝑥�, 𝜏𝜏) 𝜕𝜕
𝜕𝜕𝜕𝜕

𝜏𝜏
0

𝜏𝜏
0                   (21) 

With this choice, 𝐻𝐻�1𝑒𝑒 becomes zero. At the next order, ω−2, 𝐻𝐻�2𝑒𝑒 can be calculated from 

𝐻𝐻�2𝑒𝑒 = 𝑖𝑖�𝑇𝑇�2,𝐻𝐻�� − 1
2
�𝑇𝑇�1, �𝑇𝑇�1,𝐻𝐻��� − ℏ 𝜕𝜕𝑇𝑇�3

𝜕𝜕𝜕𝜕
− 𝑖𝑖ℏ

2
�𝑇𝑇�1, 𝜕𝜕𝑇𝑇

�2
𝜕𝜕𝜕𝜕
� − 𝑖𝑖ℏ

2
�𝑇𝑇�2, 𝜕𝜕𝑇𝑇

�1
𝜕𝜕𝜕𝜕
� + ℏ

6
�𝑇𝑇�1, �𝑇𝑇�1, 𝜕𝜕𝑇𝑇

�1
𝜕𝜕𝜕𝜕
��                   (22) 

Using 𝐻𝐻� = 𝐻𝐻�0𝑒𝑒 + ℏ�𝜕𝜕𝑇𝑇�1 𝜕𝜕𝜕𝜕⁄ � and �𝜕𝜕𝑇𝑇�2 𝜕𝜕𝜕𝜕⁄ � = �𝑇𝑇�1, (𝑝̂𝑝2 2𝑚𝑚⁄ )� = �𝑇𝑇�1,𝐻𝐻��, one obtains 

𝐻𝐻�2𝑒𝑒 = 𝑖𝑖�𝑇𝑇�2,𝐻𝐻�0𝑒𝑒� − ℏ 𝜕𝜕𝑇𝑇�3
𝜕𝜕𝜕𝜕

+ 𝑖𝑖ℏ
2
�𝑇𝑇�2, 𝜕𝜕𝑇𝑇

�1
𝜕𝜕𝜕𝜕
�                                                                (23) 

Next, a periodic 𝑇𝑇�3 is selected to counterbalance the time dependency of 𝐻𝐻�2𝑒𝑒. It is found that 
𝐻𝐻�2𝑒𝑒 64T contains a time-independent component given by 𝑖𝑖ℏ 2�𝑇𝑇�2, �𝜕𝜕𝑇𝑇�1 𝜕𝜕𝜕𝜕⁄ ��⁄ . To ensure the 
periodicity of 𝑇𝑇�2, 𝑇𝑇�3 is chosen so that 
𝜕𝜕𝑇𝑇�3
𝜕𝜕𝜕𝜕

= 𝑖𝑖
ℏ
�𝑇𝑇�2,𝐻𝐻�0𝑒𝑒� + 𝑖𝑖

2
�𝑇𝑇�2, 𝜕𝜕𝑇𝑇

�1
𝜕𝜕𝜕𝜕
� − 𝑖𝑖

2
�𝑇𝑇�2, 𝜕𝜕𝑇𝑇

�1
𝜕𝜕𝜕𝜕
�

����������
                          (24) 

The overbar expresses the time average over one period. From Eqs. (18) and (21), 𝑇𝑇�3 is 
found to be 
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𝑇𝑇�3 = − ℏ
𝑚𝑚2 ∫ 𝜕𝜕𝜕𝜕𝜏𝜏

0 ∫ 𝜕𝜕𝜕𝜕𝜏𝜏
0 ∫ 𝜕𝜕𝜕𝜕𝑉𝑉�1′′(𝑥𝑥�, 𝜏𝜏) 𝜕𝜕2

𝜕𝜕𝑥𝑥2
− ℏ

𝑚𝑚2 ∫ 𝜕𝜕𝜕𝜕𝜏𝜏
0 ∫ 𝜕𝜕𝜕𝜕𝜏𝜏

0 ∫ 𝜕𝜕𝜕𝜕𝑉𝑉�1′′′(𝑥𝑥�, 𝜏𝜏) 𝜕𝜕
𝜕𝜕𝜕𝜕
−𝜏𝜏

0
𝜏𝜏
0

ℏ
4𝑚𝑚2 ∫ 𝜕𝜕𝜕𝜕𝜏𝜏

0 ∫ 𝜕𝜕𝜕𝜕𝜏𝜏
0 ∫ 𝜕𝜕𝜕𝜕𝑉𝑉�14(𝑥𝑥�, 𝜏𝜏) −𝜏𝜏

0
1
𝑚𝑚ℏ
𝑉𝑉�0′(𝑥𝑥�)∫ 𝜕𝜕𝜕𝜕𝜏𝜏

0 ∫ 𝜕𝜕𝜕𝜕𝜏𝜏
0 ∫ 𝜕𝜕𝜕𝜕𝑉𝑉�1′(𝑥𝑥�, 𝜏𝜏)𝜏𝜏

0 + 1
2𝑚𝑚ℏ ∫ 𝜕𝜕𝜕𝜕𝜏𝜏

0  𝑄𝑄�(𝑥𝑥�, 𝜏𝜏) + 𝐼𝐼(𝑥𝑥�, 𝑝̂𝑝)           (25) 

where 

𝑄𝑄�(𝑥𝑥�, 𝜏𝜏) = 𝑖𝑖𝑖𝑖ℏ �𝑇𝑇�2, 𝜕𝜕𝑇𝑇
�1
𝜕𝜕𝜕𝜕
� − 𝑖𝑖𝑖𝑖ℏ �𝑇𝑇�2, 𝜕𝜕𝑇𝑇

�1
𝜕𝜕𝜕𝜕
�

����������
= 𝑉𝑉�1′(𝑥𝑥�, 𝜏𝜏)∫ 𝜕𝜕𝜕𝜕𝜏𝜏

0 ∫ 𝜕𝜕𝜕𝜕𝑉𝑉�1′(𝑥𝑥�, 𝜏𝜏)𝜏𝜏
0

���������������������������������� −
𝑉𝑉�1′(𝑥𝑥�, 𝜏𝜏)∫ 𝜕𝜕𝜕𝜕𝜏𝜏

0 ∫ 𝜕𝜕𝜕𝜕𝑉𝑉�1′(𝑥𝑥�, 𝜏𝜏)𝜏𝜏
0                                                                                                   (26) 

and 𝐼𝐼(𝑥𝑥�, 𝑝̂𝑝) is the integration constant that is a Hermitian operator of 𝑥𝑥� and 𝑝̂𝑝 only. The 
determination of higher-order corrections necessitates understanding 𝐼𝐼. Therefore, 𝐼𝐼  does 
not need to be evaluated in the leading-order correction. Substituting Equation (25) into 
Equation (23) yields time-independent  𝐻𝐻�2𝑒𝑒 : 

𝐻𝐻�2𝑒𝑒 = 𝑖𝑖ℏ
2
�𝑇𝑇�2, 𝜕𝜕𝑇𝑇

�1
𝜕𝜕𝜕𝜕
�

����������
= 1

2𝑚𝑚
�∫ 𝜕𝜕𝜕𝜕𝑉𝑉�1′(𝑥𝑥�, 𝜏𝜏)𝜏𝜏
0 �

2��������������������
                                                      (27) 

The resulting time-independent effective Hamiltonian, which includes the non-zero leading-
order contribution: 

𝐻𝐻�𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑝𝑝�2

2𝑚𝑚
+ 𝑉𝑉�𝑒𝑒𝑒𝑒𝑒𝑒 + 𝐻𝐻�𝑩𝑩 + 𝐻𝐻�𝑺𝑺𝑺𝑺                                                                                 (28) 

Here the effective time-independent potential, which depends on the driving frequency and 
amplitude influencing the slow motion, is expressed as follows 

𝑉𝑉�𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑉𝑉�0(𝑥𝑥�) + 1
2𝑚𝑚𝜔𝜔2 �∫ 𝜕𝜕𝜕𝜕𝑉𝑉�1′(𝑥𝑥�, 𝜏𝜏)𝜏𝜏

0 �
2��������������������
                                 (29) 

Using the time-independent effective potential 𝑉𝑉�𝑒𝑒𝑒𝑒𝑒𝑒, one can apply the established 
methodologies developed for such problems to address the original time-dependent issues. 
Thus, in the high-frequency regime, the slower dynamics are guided by the time-independent 
effective potential, which remains unaltered even in the presence of noise originating from 
the bath. The effective Hamiltonian can be interpreted as a quantum mechanical extension 
of the classical results by Kapitza (1986) and Landau and Lifshitz (1976), within the context 
of the SB model. Now the reduced Langevin equation expressing the slow variable becomes: 

𝑚𝑚𝑥𝑥�̈ + ∫ 𝑑𝑑𝑡𝑡′𝑡𝑡
0 𝛾𝛾(𝑡𝑡 − 𝑡𝑡′)𝑥𝑥�̇(𝑡𝑡′) + 𝑉𝑉�𝑒𝑒𝑒𝑒𝑒𝑒′ = 𝜉𝜉(𝑡𝑡)              (30) 

Since Eq. (30) does not have explicit time dependence, its solution does not oscillate at the 
external frequency 𝜔𝜔. The dynamics are governed by the nature of the effective potential 
(Fig. 1). Equations 29 and 30 stem from high-frequency perturbation theory, providing A 
method to convert a time-dependent problem into a time-independent framework 
approximately. This approach can be helpful in creating simplified models for condensed 
phase reactions. 
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Figure 1: Graphical Representation of a Cubic Potential Where R Represents the Reactant 

State and P Denotes the Product State While X* Implies the Transition State (Shit, 
Chattopadhyay & Ray Chaudhuri, 2013) 

To comprehend how the outcome from equation 30 may be applied to the stochastic 
dynamics of a system with periodic perturbations, it is helpful to analyse with a model. 
Consider a particle subject to an oscillating field (𝑉𝑉0 = 0), 

𝑉𝑉1(𝑥𝑥,𝜔𝜔𝜔𝜔) = 𝐴𝐴𝑒𝑒−𝛽𝛽𝑥𝑥2 sin(𝑘𝑘𝑘𝑘) cos(𝜔𝜔𝜔𝜔 + 𝜙𝜙)              (31) 
Because the time-averaged potential energy cancels out, the influence of the oscillating field 
remains significant, even at elevated frequencies. As stated in equation 29, the slower 
component of the particle's motion can be roughly described as motion within an effective 
potential, which is governed by the ratio of the amplitude to the frequency of the external 
modulation. 

𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒(𝑋𝑋) = 𝐴𝐴2

4𝑚𝑚𝜔𝜔2 𝑒𝑒−2𝛽𝛽𝑋𝑋
2𝜔𝜔[𝑘𝑘 cos(𝑘𝑘𝑘𝑘) − 2𝛽𝛽𝛽𝛽 sin(𝑘𝑘𝑘𝑘)]2                       (32) 

𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒(𝑋𝑋) is found to exhibit several local minima, two of these are more prominent in the 
parameters under consideration. Consequently, it can be concluded that a particle traversing 
such potential is likely to reside in one of these minima after an adequately extended period. 
As a result of dissipation, these minima are surrounded by basins of attraction. Therefore, 
when the friction dominates, the particle may become localised in one of the minima. Here 
the effective Hamiltonian does not have momentum-dependent couplings to the leading 
order (ω−2) due to the very high frequency regime considered. This perspective makes 
quantum escape rate calculation easy and much less expensive. As per the earlier 
demonstration, some features of the time-dependent system may be captured by studying 
a suitable time-independent system governed by the Langevin equation (equation 30). It is 
now worth investigating whether both qualitative and quantitative results for the dissipation-
driven escape from a metastable state can be obtained using a path-integral formulation 
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related to the Brownian motion (Ingold, 1997; Ingold, 2002) of quantum systems. In order to 
do so, a model system potential (say, a cubic potential, shown in Figure 1) is chosen so that 
an energy barrier of defined height separates the reactant and product states. Particles are 
initially confined in the well of state R by a large potential hump at X*. They quickly reach 
thermal equilibrium within the well. However, due to the perturbation, a small number of 
particles may gain sufficient energy to overcome the barrier and enter region P, where return 
is not possible. The particle undergoes stochastic motion inside the well until a substantial 
perturbation drives it to overcome the potential barrier. 

𝑉𝑉0 = 𝐴𝐴
2
𝑥𝑥2 − 𝐵𝐵

3
𝑥𝑥3                                               (33) 

A and B are positive constants. The position coordinate 𝑥𝑥 has its values at 𝑥𝑥 = 0 implying 
the reactant state and 𝑥𝑥 = 𝑥𝑥𝑏𝑏 64T marking transition states. The finite potential barrier separating 
the transition state and the reactant state by is expressed as (𝐴𝐴3 6𝐵𝐵2⁄ ). Here, the system 
and environment's remaining degrees of freedom act as a heat bath at temperature T. Eq. 
(33) can be rewritten for examining the escape from a metastable state as 

𝑉𝑉0(𝑥𝑥) = 1
2
𝜔𝜔2𝑥𝑥2 �1 − 𝑥𝑥

𝑥𝑥0
�                     (34) 

A minima is located at 𝑥𝑥 = 0 with with oscillations around this point having a frequency of 𝜔𝜔0 
. A barrier appears at 𝑥𝑥 = (2 3)𝑥𝑥0⁄  with a potential barrier  𝑉𝑉𝑏𝑏 = (2 27⁄ )𝜔𝜔0

2𝑥𝑥02. Assuming 
harmonic behaviour is close to the barrier leads to: 

𝑉𝑉(𝑥𝑥) = 𝑉𝑉𝑏𝑏 −
1
2
𝜔𝜔𝑏𝑏
2𝑥𝑥2                       (35) 

𝜔𝜔𝑏𝑏  is the angular barrier frequency and 𝑉𝑉𝑏𝑏 is the height of the potential barrier respectively 
located at 𝑥𝑥𝑏𝑏 with 𝜔𝜔0 = 𝜔𝜔𝑏𝑏. When the metastable state decays at a temperature T which is 
much higher than the crossover temperature, 𝑇𝑇0 [= (ℏ𝜔𝜔𝑅𝑅 2𝜋𝜋𝑘𝑘𝐵𝐵⁄ )] where thermal activation 
becomes dominant, and accounting for memory effects, the dissipation of the metastable 
state leads to the following quantum escape rate: 

𝑘𝑘𝑄𝑄 = 𝑓𝑓𝑐𝑐𝑐𝑐𝜔𝜔𝜔𝜔𝑞𝑞𝑞𝑞 exp � 𝑉𝑉𝑏𝑏
𝐾𝐾𝐵𝐵𝑇𝑇

�                                    (36) 

Hence, the barrier crossing is boosted by quantum modifications due to the introduction of 
a further quantum "channel" when the temperature is in the quantum-classical crossover 
region. This increase is due to two key quantum occurrences: the mean energy in the well 
is raised by quantum fluctuations, and when the particle is subjected to thermal excitation 
near the top of the potential barrier, these fluctuations promote tunnelling through the 
residual small barrier. 

These two effects reduce the barrier height. In the present model, when 𝑇𝑇 ≫ 𝑇𝑇0,  𝑓𝑓𝑐𝑐𝑐𝑐 becomes 
the attempt frequency or classical pre-exponential factor and is calculated as 

𝜔𝜔𝑅𝑅𝑓𝑓𝑐𝑐𝑐𝑐 = 𝜔𝜔0𝜔𝜔𝑅𝑅
2𝜋𝜋𝜔𝜔𝑏𝑏

                        (37) 
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The frequency 𝜔𝜔𝑅𝑅 is a dissipation-renormalised quantity, determined by the largest positive 
solution of the equation: 𝜔𝜔𝑅𝑅

2 + 𝜔𝜔𝑅𝑅𝛾𝛾�(𝜔𝜔𝑅𝑅) = 𝜔𝜔𝑏𝑏
2 and it corresponds to the well-known Kramers–

Grote–Hynes frequency (Grote & Hynes, 1980; Hanggi & Mojtabai, 1982) described in the 
theory of non-Markovian rate processes. Renormalising the barrier frequency captures the 
influence of memory friction on the rate. Intriguingly, the renormalised frequency is the same 
as the one used to define the crossover temperature 𝑇𝑇0 64T. The quantum correction factor 𝑐𝑐𝑞𝑞𝑞𝑞 
has no dimension and it describes how quantum effects enhance the classical rate. It can 
lead to a significant rate enhancement, even at temperatures considerably above 𝑇𝑇0 64T. As T 
approaches 𝑇𝑇0 64T from above, the quantum correction factor exhibits a singularity. Using the 
standard functional integral approach (Grabert & Weiss, 1984), quantum mechanical 
correction factor can be expressed as: 

𝑐𝑐𝑞𝑞𝑞𝑞 = ∏ 𝜈𝜈𝑛𝑛2+𝜔𝜔0
2+𝜈𝜈𝑛𝑛𝛾𝛾�(𝜈𝜈𝑛𝑛)

𝜈𝜈𝑛𝑛2−𝜔𝜔𝑏𝑏
2+𝜈𝜈𝛾𝛾�(𝜈𝜈𝑛𝑛)

∞
𝑛𝑛=1                    (38) 

Here 𝛾𝛾�(𝑍𝑍) is the Laplace transform of the damping kernel γ(z) where  𝜈𝜈𝑛𝑛’s are the Matsubara 
frequencies [2πkBT/ℏ]. As the temperature approaches 𝑇𝑇0 64T, i.e., the crossover temperature, 
𝑐𝑐𝑞𝑞𝑞𝑞 approaches 1 and diverges exactly at 𝑇𝑇0 64T. In the classical limit, where 𝑇𝑇 = 𝑇𝑇0 [i.e., 𝑇𝑇/𝑇𝑇0 →
∞] the rate expression under intermediate-to-high damping conditions yields the correct 
classical result: 

𝑘𝑘𝐼𝐼𝐼𝐼𝐼𝐼𝑐𝑐𝑐𝑐 = �𝜔𝜔0𝜔𝜔𝑅𝑅
2𝜋𝜋𝜔𝜔𝑏𝑏

� exp � 𝑉𝑉𝑏𝑏
𝑘𝑘𝐵𝐵𝑇𝑇

�                           (39) 

To extract leading quantum correction terms at elevated temperatures, Eq. (38) is 
reformulated as an exponential of a sum over logarithms, with each logarithm expanded in 
a power series of 𝑘𝑘𝐵𝐵𝑇𝑇/ℏ.  

𝑐𝑐𝑞𝑞𝑞𝑞 = exp � ℏ
2

4𝜋𝜋2
�𝜔𝜔0

2 + 𝜔𝜔𝑏𝑏
2�∑ 1

𝑛𝑛2
∞
𝑛𝑛=1 � = exp � ℏ

2

4𝜋𝜋2
�𝜔𝜔0

2+𝜔𝜔𝑏𝑏
2

(𝑘𝑘𝐵𝐵𝑇𝑇)2
��                             (40) 

Eq. 36, denoting the escape rate, may therefore be written as 

𝑘𝑘𝐼𝐼𝐼𝐼𝐼𝐼
𝑄𝑄 = � 𝜔𝜔0

2𝜋𝜋𝜋𝜋𝐵𝐵
� ��𝛾𝛾2

4
+ 𝜔𝜔𝑏𝑏

2 − 𝛾𝛾
2
� × exp � ℏ

2

4𝜋𝜋2
�𝜔𝜔0

2+𝜔𝜔𝑏𝑏
2

(𝐾𝐾𝐵𝐵𝑇𝑇)2
�� exp � 𝑉𝑉𝑏𝑏

𝐾𝐾𝐵𝐵𝑇𝑇
�            (41) 

This expression is valid in The Kramers regime, i.e., moderate to strong damping regime 
and for 𝑇𝑇 > 𝑇𝑇0 where the primary mechanism for escape is not quantum tunnelling, yet it 
contributes notable quantum corrections to the classical activation rate. At strong friction 𝛾𝛾 ≫
𝜔𝜔0, 𝜔𝜔𝑏𝑏 with 𝑇𝑇 ≫ 𝑇𝑇0, the quantum correction can be given by 

𝑐𝑐𝑞𝑞𝑞𝑞 = exp �ℏ�𝜔𝜔0
2+𝜔𝜔𝑏𝑏

2�
2𝜋𝜋𝑘𝑘𝐵𝐵𝑇𝑇

�Ψ �1 + ℏ𝛾𝛾
2𝜋𝜋𝑘𝑘𝐵𝐵𝑇𝑇

� − Ψ(1)��                     (42) 

where Ψ(𝑧𝑧) expresses digamma function. This simplified form, Eq. (42), is accurate only for 
systems with frequency-independent damping. The effective potential caused by external 
modulation is 
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𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒 = 𝐴𝐴�

2
𝑥𝑥2 − 𝐵𝐵�

3
𝑥𝑥3                                   (44) 

where 

𝐴̃𝐴 = 𝐴𝐴 + 𝑎𝑎2

2𝜔𝜔2                                                (45) 

It is clearly evident that the tuning of system parameters and the activation barrier height is 
influenced by external drive. Thus, the amplitude-to-frequency ratio of the driving modulation 
(a/ω) plays a crucial influence in determining the escape rate as well as the barrier height. 
The well and barrier are positioned at at 𝑥𝑥0 = 0 and 𝑥𝑥𝑏𝑏 = 𝐴̃𝐴/𝐵𝐵, respectively and leading to 
an effective potential barrier: 

𝑉𝑉𝑏𝑏
𝑒𝑒𝑒𝑒𝑒𝑒 = 𝐴𝐴�3

6𝐵𝐵2
                                  (46) 

In the intermediate-to-high damping regime, where the energy dissipated per cycle far 
exceeds thermal energy, and assuming unit mass, the quantum Kramers rate for a rapid, 
periodically modulated particle can be expressed at times t > 1/ω, when the dynamics 
effectively become time-independent, as:  

𝑘𝑘𝐼𝐼𝐼𝐼𝐼𝐼
𝑄𝑄 = � 𝜔𝜔�0

2𝜋𝜋𝜔𝜔�𝑏𝑏
� ��𝛾𝛾2

4
+ 𝜔𝜔�𝑏𝑏2 −

𝛾𝛾
2
� × exp � ℏ

2

4𝜋𝜋2
�𝜔𝜔�0

2+𝜔𝜔�𝑏𝑏
2

(𝐾𝐾𝐵𝐵𝑇𝑇)2
�� exp �− 𝑉𝑉𝑏𝑏

𝑒𝑒𝑒𝑒𝑒𝑒

𝐾𝐾𝐵𝐵𝑇𝑇
�                    (47) 

The classical counterpart of the rate can be written as: 

𝑘𝑘𝐼𝐼𝐼𝐼𝐼𝐼𝐶𝐶𝐶𝐶 = � 𝜔𝜔�0
2𝜋𝜋𝜔𝜔�𝑏𝑏

� ��𝛾𝛾2

4
+ 𝜔𝜔�𝑏𝑏2 −

𝛾𝛾
2
� exp �− 𝑉𝑉𝑏𝑏

𝑒𝑒𝑒𝑒𝑒𝑒

𝐾𝐾𝐵𝐵𝑇𝑇
�                                                  (48) 

Here 𝜔𝜔�0 and 𝜔𝜔�𝑏𝑏 are the frequency terms involved with the time-independent effective 
potential at the well and at the top of the barrier, respectively. Equation 47 contains both the 
exponents and the prefactors modified by the applied external field. When external 
perturbation is absent, this result agrees well with the well-known Kramers model. This is a 
clear indication of the accuracy of this model. Obtaining this result through path-integral 
techniques is a complex and challenging task. This analysis demonstrates the interplay 
between the fixed-temperature Intermediate-to-high-damping quantum Kramers rate and the 
semi-classical approach within the multiple-scale perturbation theory framework for 
Brownian motion in rapidly varying periodic potential. While the calculation of the rate of 
escape in a rapidly driven quantum system from a static metastable state might seem 
overwhelmingly dependent on time and far from adiabatic, this work offers a perspective 
through which the dynamics can be understood in terms of a time-independent modified 
potential. Theoretical calculation of the dissipation-induced escape rate from a metastable 
state subjected to a fast-oscillating external field reveals two main effects on the escape 
rate, arising from the high-frequency nature of the field relative to the particle's dynamics. 
First, environmental disturbances alter the kinetics near the energy barrier's peak, thereby 
influencing the stationary flux across it. Second, the equilibrium statistical distribution in the 
source well transitions to a steady-state form, incorporating the influence of energy injected 
by the external driving force. Taking into account these pronounced dynamic changes, a 
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generalised form of escape rate can be developed which reveals how external perturbation 
affects the rate. Equation (47) is subsequently rewritten as a function of 𝑎𝑎 𝜔𝜔⁄ : 

𝑘𝑘𝐼𝐼𝐼𝐼𝐼𝐼
𝑄𝑄 = 1

2𝜋𝜋
��𝛾𝛾2

4
+ �𝐴𝐴 + 𝑎𝑎2

2𝜔𝜔2� −
𝛾𝛾
2
�

�����������������
𝐼𝐼

× exp �ℏ
2

12
�
𝐴𝐴+ 𝑎𝑎2

2𝜔𝜔2

(𝐾𝐾𝐵𝐵𝑇𝑇)2
��

�����������
𝐼𝐼𝐼𝐼

× exp �−
�𝐴𝐴+ 𝑎𝑎2

2𝜔𝜔2
�
3

6𝐵𝐵2𝐾𝐾𝐵𝐵𝑇𝑇
�

�����������
𝐼𝐼𝐼𝐼𝐼𝐼

                         (49) 

Term II is found to be absent in  𝑘𝑘𝐼𝐼𝐼𝐼𝐼𝐼𝐶𝐶𝐶𝐶  . The effect of temperature and the parameter ratio 
𝑎𝑎 𝜔𝜔⁄  on the escape dynamics can be examined by considering cubic potential and studying 
how ln 𝑘𝑘 varies with 1 𝑇𝑇⁄  for a Brownian particle in it, capturing both external field influences 
and quantum effects (as discussed elaborately in Ref. (Shit, Chattopadhyay & Ray 
Chaudhuri, 2013). This analysis provides that in the low-temperature regime, dissipative 
quantum decay leads to a rise in the decay rate with temperature rise. The quantum 
correction effectively decreases the potential barrier, which increases the escape rate. The 
classical cases follow a linear trend, consistent with the Arrhenius law. However, at low 
temperatures (high 1/T), the plot becomes nonlinear due to quantum effects, specifically the 
term II in equation 49, which is a key observation of this study. The quantum term is 
modulated by temperature as T−2, contributing to the deviation from linearity. This highlights 
the quantum nature of the system. The escape process involves two processes—one is 
thermal activation which becomes dominant at elevated temperatures, and the other one is 
quantum tunnelling which plays a key role as the temperature decreases. Decay at 
extremely low temperatures arises purely from quantum mechanisms. As the temperature 
increases, the system displays linear trends, reflecting more classical behaviour. Since 
thermal energy remains well below the barrier height, external driving becomes essential for 
activation. When there is no external perturbation, the traditional Kramers plot is obtained. 
Observations reveal that periodic, space-dependent, high-frequency perturbations 
significantly increase the classical transition rate of Brownian particles relative to the 
unperturbed case. 

 
Figure 2: A Diagrammatic Representation Outlining the Temperature-Dependent Escape 
Dynamics Showing the Crossover Temperature T0, Below Which Quantum Tunnelling 

Dominates Over Thermal Escape (Shit, Chattopadhyay & Ray Chaudhuri, 2013) 
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The expression in Eq. (44) reveals that with an increase in the ratio 𝑎𝑎 𝜔𝜔⁄ , the barrier height 
increases, which in turn decreases the escape rate. This behaviour is demonstrated through 
the plots depicting analytical quantum (Eq. 47) and classical (Eq. 48) nonadiabatic escape 
rates, as functions of 𝑎𝑎 𝜔𝜔⁄  at different temperatures (Shit, Chattopadhyay & Ray Chaudhuri, 
2013). Additionally, it is observed that tunnelling contributes to an increased escape rate 
through an effective decrease in barrier height. The findings suggest that with a rising 𝑎𝑎 𝜔𝜔⁄  
ratio, the role of external driving overtakes that of quantum tunnelling. An increase in the 
ratio 𝑎𝑎 𝜔𝜔⁄  results in a higher barrier results a notable reduction in the stimulated escape rate 
causing the Brownian particle to take a longer time to transition into the more stable well. 
Thus, it is also noteworthy that tuning the ratio of the external drive’s amplitude to its 
frequency allows control over the system's lifetime in a metastable state, either extending or 
reducing it. As temperature rises, the classical rate gets enhanced as expected, but the 
quantum escape rate behaves differently. For significantly elevated 𝑎𝑎 𝜔𝜔⁄  ratios, the quantum 
escapes rate rises with temperature, while in the low 𝑎𝑎 𝜔𝜔⁄  range, higher thermal energy 
paradoxically reduces the quantum escape rate. This counterintuitive finding reveals an 
unexpected mechanism for enhancing system stability under nonequilibrium conditions, in 
stark contrast to classical system behaviour. The subtle coupling between the driving field 
and the intrinsic system parameters causes this unusual temperature effect, offering 
valuable insights into dynamics away from thermal equilibrium. The physical basis for this 
unforeseen outcome can be explained using equation 49. It has been observed that term III 
controls the effect of temperature on 𝑘𝑘𝐼𝐼𝐼𝐼𝐼𝐼𝐶𝐶𝐶𝐶  and the classical escape rate gets enhanced with 
the elevation of temperature. But this is not the case for 𝑘𝑘𝐼𝐼𝐼𝐼𝐼𝐼

𝑄𝑄  which includes two exponential 
components involving temperature, each with a different sign. The exponential components 
in equation 49 show that term II (stemming from field modulation) varies with T−1, while term 
III (a pure quantum effect) shows a variation with T−2. This asymmetric temperature 
dependence leads to the notable impact of temperature on 𝑘𝑘𝐼𝐼𝐼𝐼𝐼𝐼

𝑄𝑄  as field parameters change. 
This analysis also illustrates how external perturbation influences the threshold or crossover 
temperature T0, which marks the transition between quantum tunnelling and thermal 
activation. The current theoretical framework is applicable for temperatures above this 
crossover point. As shown in Figure 2, a clear transition occurs at T0, where the dominant 
escape mechanism shifts from thermally activated hopping to quantum tunnelling. Since the 
dissipation mechanism dictates the magnitude of T0, the comparative extents of the quantum 
and classical regimes vary with dissipation strength. For T < T0, escape is primarily governed 
by quantum tunnelling. Under high-temperature conditions (T≫T0), the decay is 
predominantly due to thermal activation induced barrier escape, with negligible quantum 
contributions. However, in the vicinity of the crossover temperature (i.e., just above T0), 
quantum fluctuations start to significantly affect the escape rate, enhancing it beyond 
classical predictions. This quantum contribution becomes increasingly prominent as the 
temperature decreases. Within the framework of the present model, the revised crossover 
temperature 𝑇𝑇�0 64T may be expressed as: 

𝑇𝑇�0 = ℏ
2𝜋𝜋𝑘𝑘𝐵𝐵𝑇𝑇

���𝜔𝜔02 + 𝛾𝛾2

4
� − 𝛾𝛾

2
�                                                                                               (50) 
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As a result, it is clear that 𝑇𝑇�0 depends on the modulation parameters in addition to the 
dissipation mechanism. From the form of the crossover temperature expression, it is evident 
that as a result of external driving, the modified crossover temperature exceeds that of the 
unmodulated system. Therefore, a remarkable aspect of this work is the extension of the 
temperature range in which quantum effects become significant. Specifically, as spatial 
friction increases, the crossover temperature, marking the shift from quantum tunnelling to 
thermal activation, also rises and it makes the quantum effects relevant at higher 
temperatures. 
Conclusion 
Barrier-crossing processes are fundamental to a wide array of physical, chemical, and 
biological systems. Despite extensive studies and various strategies developed to control 
activation under external perturbations, the field remains active, with many open questions 
yet to be addressed. Periodically modulated systems, which are far from thermal equilibrium, 
form an important class of such systems. The present study is to analyse the escape 
dynamics of a quantum Brownian system in contact with an Ohmic bath, driven by a high-
frequency periodic monochromatic driving field—conditions that create a far-from-
equilibrium environment that presents theoretical challenges. Using the path-integral 
approach within the "Kapitza-Landau time window" framework for the interactions between 
the system and the environment, under high-frequency modulation, the quantum system's 
behaviour is well approximated by a static effective Hamiltonian or potential. As a 
consequence, the barrier height becomes renormalised, and the escape rate acquires a 
nontrivial prefactor that intricately depends on the system and external field characteristics. 
Therefore, the field alters the activation energy for escape. This formulation delivers a time-
independent rate expression that holds for intermediate-to-high damping, for temperatures 
exceeding the crossover temperature, and in the high-frequency driving regime where ω 
surpasses all other related system frequencies. The structure of the time-independent 
modified potential-shaped by amplitude-to-frequency ratio 𝒂𝒂 𝝎𝝎⁄ 57T plays a key role in 
determining the escape rate. Modifications arising from the applied perturbation and 
quantum mechanical contributions are also crucial in shaping the barrier-crossing dynamics. 
For a well-chosen set of field parameters, even a simplified static potential surface may see 
a substantial reduction in the net escape rate as the temperature increases. Therefore, the 
"extra dose" of external modulation does not always result in an increase in the rate of 
escape, which is a rare and paradoxical outcome. This stems from the subtle balance 
between dissipative forces and the applied modulation. While classical escape rates, such 
as those predicted by the Kramers model, generally rise with temperature under modulation, 
quantum escape rates display a much more nuanced and nontrivial temperature 
dependence. This study offers important understanding of how quantum mechanical effects 
modify reaction dynamics in condensed phases, especially in systems operating beyond 
equilibrium conditions. 
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