
doi: 10.31674/book.2025ccbsse003 

Converging Chemical and Biological Sciences for a Sustainable Era 

 

Metal-Free and Sustainable Strategies in the Synthesis of 
Substituted Furans: A Contemporary Review 
Harisadhan Ghosh1*, Anupam Jana2 
1Department of Chemistry, Surendranath College, Kolkata 700009, West Bengal, India 
2National Institute of Pharmaceutical Education and Research (NIPER) Hajipur 844102, 
Bihar, India 
*Corresponding Author’s E-mail: ghosh.harisadhan@gmail.com 

Abstract 
Furans and their derivatives play an important role in synthetic organic chemistry and 
biological chemistry, and they serve as key structural units in numerous natural products. In 
recent times, environmentally benign synthetic processes have emerged as a vital strategy 
for the production of fine organic chemicals. This review article summarises recent advances 
in various transition metal-free, sustainable synthetic methodologies for the synthesis of 
substituted furans. The focus is placed on literature reports published during the past five 
years (2020–2025). Various synthetically important methodologies—such as catalytic 
methods, cycloaddition reactions, and multicomponent reactions—used to prepare 
substituted furan scaffolds have been critically reviewed. Particular emphasis has been 
placed on metal-free methods that adhere to the principles of Green Chemistry. 
Keywords: Biological Activities; Cycloaddition Reaction; Green Chemistry; Metal-Free 
Synthesis; Multicomponent Reaction; Substituted Furans 
Introduction 
Furan and its derivatives are heterocyclic organic compounds featuring a five-membered 
aromatic ring composed of four carbon atoms and one oxygen atom. Furan itself is a 
colourless, highly volatile, and flammable liquid with a boiling point close to room 
temperature (Joule & Mills, 2010). It exhibits aromatic properties (Resonance energy= 16 
kcal/mol or 67 kJ/mol) due to the delocalisation of π-electrons within the ring (Figure 1). 
 

 
Figure 1: Furan and its resonating structures 

It is an important class of organic compound because it acts as a key structural unit in 
numerous natural products and also has been found to exhibit several biological activities, 
such as anti-inflammatory, anticancer, antioxidant, antifungal, antibacterial, antispasmodic 
and herbicidal activities (Saeid, Al-sayed & Bader, 2023). Compounds comprising the furan 
ring are biologically active and are existent in a number of pharmaceutical products (Figure 
2). 
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Figure 2: Biologically active furans 

Furan rings act as unique synthetic intermediates because of the low resonance energy 
value of the furan scaffold (Gubina & Kharchenko, 1995). They undergo a number of 
synthetically useful transformations, such as addition reactions, metalations, cycloadditions, 
Ring-opening reactions, and electrophilic substitutions (Eicher, Hauptmann & Speicher, 
2003). 
Due to the wide range of biological and synthetic importance, various synthetic 
methodologies have been developed for the synthesis of the furan moiety over the years 
(Deepthi, Babu & Balachandran, 2019). This book chapter discusses the metal-free, green, 
and sustainable synthetic methodologies that have been explored for the construction of 
substituted furan scaffolds over the past five years (2020–2025). 
Literature Review  
Many synthetic approaches have been followed for the construction of furan scaffolds. The 
most classic synthetic route to achieve poly-substituted furan is Paal-Knorr synthesis, which 
is basically an acid-catalysed cyclisation of 1,4-dicarbonyl compounds (Khaghaninejad & 
Heravi, 2014; Li, 2009) (Scheme 1). 
Another classical synthetic method is the Feist–Benary synthesis which is an organic 
reaction between β-dicarbonyl compounds and α-halo ketones which leads to substituted 
furan compounds. Contrary to the Paal-Knorr synthesis, this cyclocondensation reaction is 
catalssed by a base (Scheme 1) (Peng et al., 2016). 
Recently, a diverse array of advanced methodologies has been developed for the 
construction of furan scaffolds, including (a) transition metal-catalysed construction of furan 
skeletons (Gulevich et al., 2013) (b) direct functionalisation of the furan core to achieve 
substituted furan moieties (Karlinskii & Ananikov, 2021) (c) catalytic methods for the 
preparation of substituted furans from sugar and biomass (Romo et al., 2018) facilitating the 
rapid and efficient synthesis of structurally diverse furan frameworks. 
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Scheme 1: Paal-Knorr and Feist-Benary Synthesis of Poly-substituted Furan 

Although these methods have demonstrated efficiency in synthesising substituted furan 
derivatives, they exhibit certain limitations, including the reliance on costly metal catalysts, 
the use of environmentally hazardous solvents, and the requirement for harsh reaction 
conditions. Consequently, there is a strong impetus to develop straightforward, cost-
effective, and, most importantly, metal-free green and sustainable methodologies for the 
synthesis of densely functionalised furan derivatives from readily available starting material. 
This book chapter will primarily focus on metal-free, sustainable, and environmentally benign 
synthetic strategies for the construction of substituted furans, as highlighted in recent 
advancements. 
Discussion 
A recent literature survey covering the last five years (2020–2025) reveals that numerous 
efforts have been made to develop non-metallic synthetic routes for the construction of poly-
substituted furan scaffolds. The synthetic reports have been documented as follows: 
Synthesis of Substituted Furans via Various Metal-Free Catalytic Methods: 
Iodine Catalysed Synthesis of Substituted Furan: 
Pace et al. (2021) introduced an efficient and practical approach for synthesising 3-carboxy-
2,5-disubstituted furans. Their method utilises α-propargyl-β-ketoester substrates and 
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employs molecular iodine as a catalyst under mild conditions. This protocol accommodates 
a wide variety of functional groups and provides an environmentally friendly alternative to 
existing methods for obtaining furan derivatives. After conducting DFT (Density Functional 
Theory) calculations, the authors determined that the reaction mechanism is complex and 
may involve multiple competing pathways occurring simultaneously (Scheme-2). 
  

 
 

Scheme 2: Synthesis of 3-carboxy-2,5-disubstituted Furans 
 
NHC Catalysed Synthesis of Substituted Furan: 
 

A recent study by the research group of Wang (2024) presents an efficient and selective 
approach for synthesising highly substituted furans. They have demonstrated an innovative 
N-heterocyclic carbene (NHC)-catalysed strategy that enables the cross-coupling and 
cyclisation of readily available ynenones with various aldehydes (Scheme 3). This method 
is characterised by high atom economy, mild reaction conditions, broad substrate 
compatibility, and excellent functional group tolerance. 
 

 
 

Scheme 3: Synthesis of Tetra-Substituted Furans from Enynone Catalysed by NHCs 

The proposed reaction mechanism, illustrated in Scheme 4, begins with the base activating 
the catalyst. This active catalyst then interacts with the aldehyde, leading to the Breslow 
intermediate. 
Subsequently, the Breslow intermediate undergoes a reaction with the alkenyl group of 
enynone, generating intermediate I. This intermediate then proceeds through a 5-exo-dig 
cyclisation, yielding intermediate II. Finally, the aromatisation step results in the desired 
product (Scheme 4). 
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Scheme 4: Plausible Mechanism of NHC Catalysed Tetra-substituted Furans Formation 

Acid Catalysed Synthesis of Substituted Furan: 
Liu’s research group (2021) developed a novel divergent approach for synthesising 
substituted furan derivatives from 2-hydroxy-1,4-diones via an acid-catalysed method. The 
reaction enables selective functionalisation at either the 2a or 5a position of the resulting 
product, determined by the structure of the starting material (Scheme 5). 
 

 
 

Scheme 5: Synthesis of Substituted Furan by Cascade Reactions 
 
The authors proposed a plausible reaction mechanism that accounts for the formation of 
different products based on the structure of the starting materials (Scheme 6). When the R¹ 
group is a hydrogen atom, a 1,4-hydrogen elimination proceeds via the Path-B mechanism, 
generating a 1,3,5-triene intermediate. A subsequent 1,6-conjugate addition by a 
nucleophile, followed by isomerisation, leads to the formation of the product P-2. In contrast, 
when R¹ is an alkyl group, the reaction follows Path-A, involving a carbocation 
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rearrangement that is quickly intercepted by a nucleophile through a Friedel–Crafts-type 
reaction, yielding the functionalised product P-1 (Scheme 6). 
 

 
 

Scheme 6: Proposed Reaction Mechanism 
 
Chen and colleagues (2021) developed a metal-free method for synthesising poly-
substituted furans through a TMSOTf-catalysed formal [3+2] cycloaddition between 
electron-rich alkynes and α-hydroxy ketones. This approach is an atom economic method 
that generates water as the primary by-product (Scheme 7). 
 

 
 

Scheme 7: TMSOTf-catalysed Synthesis of Substituted Furans 
 
Mechanistic investigations indicate that the reaction likely follows an acid-catalysed 
sequence involving syn-addition, cyclisation, and aromatisation steps (Scheme-8). In the 
initial stage, TMSOTf may react with trace water present in the system to generate TfOH. 
The resulting TfOH then activates the ynamide (R), leading to the formation of a reactive 
keteniminium ion intermediate (A). This intermediate is intercepted by the hydroxyl group of 
benzoin, resulting in the formation of the enamide intermediate (B). 
 

A subsequent intramolecular nucleophilic attack on the acid-activated carbonyl group 
produces iminium ion (D). This species undergoes enamide–iminium tautomerisation to form 
another enamide intermediate (E), which then undergoes acid-catalysed dehydration to 
furnish the final product (P) (Scheme 8). 
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Scheme 8: Proposed Reaction Mechanism of Furan Synthesis through Acid Catalysis 

Phosphine Mediated Synthesis of Substituted Furan: 
The phosphine-mediated synthesis of substituted furan moieties has been the subject of 
extensive study for many years (Kuroda, Hanaki & Kawakami, 1999; Wang et al., 2011). In 
2004, Jung, Wang and Krische reported phosphine-mediated reductive condensation of g-
acyloxy butynoates to form furans (Krische furan Synthesis) (Scheme-9).  
 

 
 

Scheme 9: Krische Furan Synthesis 
 
Very recently, Wang et al. (2024) reinvestigated the Krische furan synthesis method. It is 
accepted that Ph₃P-mediated formation of the acyl allenoate intermediates is a crucial step 
for this reaction (Scheme-9). The ketene intermediate subsequently undergoes 6π oxa-1,5-
electrocyclisation catalysed by organophosphine. The final step is a cascading [1, 2]-H shifts 
followed by eliminative aromatisation to give rise to the substituted furans. 
 

 
 

Scheme 10: Mechanistic Pathway of the Krische Furan Synthesis 
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Recently, Li and Zhou (2020) have effectively developed a highly efficient method involving 
nucleophilic addition, O-acylation, and an intramolecular Wittig reaction of β-trifluoromethyl 
α,β-enones, enabling the synthesis of trifluoromethyl-functionalised, multi-substituted furan 
compounds (Scheme 11). 

Scheme 11: Synthesis of Substituted Furans via Tandem Acylation–Wittig Reaction 

A proposed mechanism for this phospha-Michael addition, followed by O-acylation and an 
intramolecular Wittig reaction, is illustrated in Scheme 12. The process begins with the 
regioselective nucleophilic addition of Bu₃P to β-trifluoromethyl α,β-enones, forming the 
zwitterionic intermediate (A). Subsequently, intermediate (A) undergoes acylation with acyl 
chloride, yielding intermediate (B). This intermediate is then deprotonated by Et₃N, 
generating ylide (C). Finally, an intramolecular Wittig reaction involving ylide (C) results in 
the formation of trifluoromethylated furan (D). 

Scheme 12: Plausible Reaction Mechanism 

Tönjes, Medvarić and Werner (2024) reported the synthesis of tri-tetrasubstituted furans 
starting from activated alkenes and acyl chlorides using a phospholene or phosphetane 
P(III)/P(V) redox cycling catalytic system (Scheme 13). In this transformation, Phenylsilane 
(PhSiH3) is used as a terminal reductant, which reduces the formed phosphine oxides in the 
catalytic cycle. 
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Scheme 13: Synthesis of Tri-substituted Furan by P(III)/ P(V) Redox Cycling Catalysis 

Very recently, Li et al. (2025) demonstrated a facile synthesis of furan-substituted gem 
difluoroalkenes using conjugated ene-yne-ketones as the furan source and Ph3P+CF2CO2− 
as an efficient difuoro carbene (:CF2) source mediated by PFTB-promoted cross-coupling 
strategy (Scheme-14). It is worth noting that furan-substituted gem-difluoroalkenes serve as 
bioisosteres of the α-carbonyl furan framework, a key structural motif commonly found in 
natural products and potential drug candidates. 

Scheme 14: Synthesis of Substituted Furan with Gem Difluoroalkenes 

The authors proposed a most probable reaction mechanism based on their controlled 
experiment results (Scheme 15). The conjugated eneyne ketone (1) is initially activated by 
(CF₃)3COH (PFTB). This promotes an intramolecular nucleophilic attack by the carbonyl 
oxygen, forming a stabilised zwitterionic intermediate A. The vinyl anion in A then rapidly 
traps a difluorocarbene (:CF₂) which is generated from thermal decomposition of 
Ph₃P⁺CF₂CO₂⁻, yielding intermediate B/C. Tautomerisation of B/C ultimately gives the 
desired furan-substituted gem-difluoroalkene -P. 

Scheme 15: Proposed Reaction Mechanism for the Formation of Furan-Substituted Gem-
Difluoroalkene 
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Synthesis of Substituted Furan through Cyclo-Addition Reaction 
 

Kondoh and colleagues (2020) developed an efficient approach for synthesising 
tetrasubstituted furans via a [3 + 2] cycloaddition strategy, utilising the [1,2]-phospha-Brook 
rearrangement under Brønsted base catalysis (Scheme-16). This two-step, one-pot formal 
cycloaddition involves the nucleophilic attack of an α-oxygenated propargyl anion—
generated in situ through the [1,2]-phospha-Brook rearrangement—on an aldehyde at the γ-
position, followed by NIS-mediated intramolecular cyclisation (Scheme-17). The process 
selectively yields 2,4,5-trisubstituted-3-iodofurans bearing diverse substituents. This 
methodology, employing readily accessible starting materials, offers a valuable route to 
structurally diverse tetrasubstituted furan. 
 

 
 

Scheme 16: Synthesis of Tetrasubstituted Furans Utilising [1,2]-Phospha-Brook 
Rearrangement 

 

 
 

Scheme 17: Proposed Reaction Mechanism 

Zhang et al. (2022) have recently introduced a convenient one-pot strategy for synthesising 
di-, tri-, and even tetra-substituted furans in moderate to good yields. This method utilises 
readily accessible starting materials and employs cost-effective boron trifluoride as a catalyst 
(Scheme-18). Notably, the process is both metal- and oxidant-free. It involves the 
cyclopropanation of α,β-alkenyl ketones with phenylchlorocarbene, followed by a BF₃-
mediated ring-opening and cyclo-isomerisation via a Cloke–Wilson rearrangement, 
culminating in HCl elimination to form multi-substituted furans. This protocol offers 
operational simplicity, mild reaction conditions, and broad substrate compatibility, making it 
an efficient route to synthetically and biologically valuable furan derivatives. 

 
Scheme 18: Synthesis of Substituted Furan through BF3:Et2O Mediated Formal [4 + 1] 
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To gain insight into the reaction mechanism, the authors conducted a series of control 
experiments. A simplified representation is provided in Scheme-19. Upon thermolysis, the 
precursor 3-halo-3-phenyldiazirine undergoes decomposition to generate the electrophilic 
singlet phenyl-halo-carbene (PhClC:). This reactive carbene rapidly engages in a [1 + 2] 
cycloaddition with the α,β-alkenyl ketone, yielding a halocyclopropyl ketone intermediate (A). 
The introduction of BF₃·Et₂O facilitates the Cloke–Wilson rearrangement of intermediate A, 
producing a key zwitterionic species (I). Intramolecular cyclisation of intermediate I then 
furnish dihydrofuran B, which undergoes elimination of HX in the presence of BF₃ to afford 
the final furan product (Scheme-19). 

 
Scheme 19: A Plausible Reaction Mechanism 

 
Synthesis of Substituted Furan through Multicomponent Reaction 
The synthesis of fluorine-containing furan scaffolds presents a significant challenge due to 
their structural complexity. However, these fluorinated furan derivatives are of great interest 
because they exhibit valuable pharmacological activities, including anti-HIV, antibacterial, 
and antiparasitic effects. 
In 2019, 2-amino-3-perfluoroalkylfurans were successfully synthesised via a 
multicomponent reaction involving aldehydes, isocyanides, and methyl perfluoroalk-2-
ynoates as the starting materials (Wang et al., 2019) (Scheme 20). 
 

 
 

Scheme 20: Synthesis of 2-amino-3-perfluoroalkylfurans through Multicomponent Reaction 
 
Komogortsev and colleagues (2020) developed an efficient one-pot method for synthesising 
a variety of substituted 2-aminofurans. This strategy involves a multicomponent reaction 
between 3-hydroxy-4H-pyran-4-ones, α-ketoaldehydes, and methylene-active nitriles 
(Scheme 21). The approach stands out for its operational simplicity and effectiveness, 
offering a straightforward route to access the 2-aminofuran framework. Key advantages of 
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the method include high product yields, mild reaction conditions, good atom economy, and 
a straightforward purification process. 

Scheme 21: Synthesis of 2-aminofuran Derivatives via Multicomponent Reaction 

A plausible mechanism for this transformation as suggested by the authors has been 
presented below (Scheme 22)- 

Scheme 22: Proposed Reaction Mechanism for the Formation of 2-aminofurans 

In 2020, Jana, Adhikary and Pramanik introduced a highly effective method utilising 
graphene oxide as a catalyst in a microwave-assisted, one-pot process for synthesising 
densely substituted furan derivatives. This approach, which started with basic compounds 
like 1,3-diketones, arylglyoxal and indole or benzothiophenol, etc., demonstrated a broad 
reaction scope. The team successfully synthesised various multi-substituted indole–furan 
conjugates, achieving excellent compatibility with a range of functional groups (Scheme 23). 

Scheme 23: Graphene Oxide Catalysed MW-assisted One-pot Synthesis of Densely 
Substituted Furan 

The proposed mechanism for the multicomponent reaction is depicted in Scheme 24. 
Initially, arylglyoxal participates in an aldol-type condensation with a 1,3-diketone, which is 
subsequently followed by a Michael addition with indole, resulting in the formation of 
intermediate A. This is followed by a Paal–Knorr cyclisation, facilitated by graphene oxide 
(GO), leading to the formation of intermediate B and ultimately yielding the desired furan-
based product. The oxygen-rich surface of GO—featuring groups like epoxy, hydroxyl, 
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carboxyl, and sulfonic acid—provides both hydrophilic and acidic conditions that are crucial 
for driving the reaction forward. 

Scheme 24: Proposed Reaction Mechanism of Graphene Oxide Catalysed Furan Synthesis 

Very recently, Erguven, Zhou and Arndtsen (2021) have described a modular method to 
construct furans from aldehydes, acyl chlorides and alkynes (Scheme 25). 

Scheme 25: Synthesis of Substituted Furan through Multicomponent Reaction 

Base Mediated Synthesis of Substituted Furans: 
In 2020, You and colleagues introduced an innovative, transition-metal-free approach for 
synthesising polysubstituted furans using inexpensive and readily accessible starting 
materials. This base-mediated method effectively accommodates a wide range of β-keto 
substrates—such as β-diketones, β-ketoesters, β-ketosulfonyls, and β-ketonitriles—along 
with vinyl dichlorides, enabling the efficient formation of 2,3-disubstituted and 2,3,5-
trisubstituted furans with moderate to excellent yields (Scheme-26). 

Scheme 26: Transition-metal-free Approach to Polysubstituted Furans 
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The proposed reaction mechanism is illustrated in Scheme 27. Under basic conditions, the 
elimination of 1,1-dichloroalkene leads to the formation of the key intermediate, alkynyl 
chloride (A). This intermediate then undergoes a nucleophilic α-addition by the anionic 
species generated from deprotonation of the β-keto compound, resulting in intermediate (B). 
A subsequent elimination from (B) gives rise to the β-ketoalkyne intermediate (C). Finally, 
an intramolecular cycloisomerisation of intermediate (C) through the enolate form (D), 
promoted by the basic environment, yields the desired polysubstituted furan products 
(Scheme 27). 
 

 
 

Scheme 27: Proposed Reaction Mechanism of Base Mediated Furan Synthesis 
 
An oxidative synthetic route that excludes the use of transition metals has been developed 
for producing substituted furans from β-ketoanilides and vicinal diols (Maity & Panda, 2025). 
This methodology is compatible with a diverse array of functional groups, including halogens, 
methoxy, methyl, and nitro, and allows for the regioselective synthesis of 2,3-disubstituted 
and 2,3,5-trisubstituted furans through base-induced oxidative C–C and C–O bond formation 
(Scheme 28). Furthermore, the approach has been extended to the regioselective 
construction of substituted pyrroles from β-ketoenamines, utilising ethylene glycol as a two-
carbon source. Key benefits of this strategy include straightforward execution, gentle 
reaction conditions, broad functional group compatibility, and notably, the elimination of both 
solvents and hazardous transition metal catalysts. 
 

 
 

Scheme 28: Synthesis of Substituted Furan from β-ketoanilides and Vicinal Diols 
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Very recently in 2023, a method for the synthesis of unsymmetrically substituted furans 
based on the extended Corey−Chaykovsky reaction has been developed (Shcherbakov et 

R1

O

R2

Cl

Cl

EWG

O
R2

R1

EWG

Cs2CO3

Cs2CO3

R1

O
EWG

ClR2
-HCl R1

O

EWG

Cl
R2

R1

O

H

R2

-Cl
-

Cs2CO3R1

O

EWG

R2

EWG
(A) (B) (C)

(D)

OH
HO

R

TBHP (2.4 mmol)

Pyridine (1.8 mmol)
85 oC, 12h
R = H, Me

R
OH

O

R2R1

O O

(0.6 mmol)
85

 o
C, 2-20h O

O
R2

R1 R2 O

O
PhHN

Me
64%

O

O
HN

Me
57%

Br

O

O
HN

32%Me

Representative Examples

47



Sustainable Synthesis of Substituted Furans 

 Converging Chemical and Biological Sciences for a Sustainable Era 

 

al., 2023). The method is characterised by simple reaction conditions and reagents, high 
yields, and a wide range of formed products (Scheme-29). 

 
Scheme 29: Synthesis of Substituted Furan via Extended Corey−Chaykovsky Reaction 

The initial compounds used are β-aryl-β-dialkylamino-α,β-unsaturated ketones, which can 
be readily synthesised through the Michael addition of diethylamine to 3-arylpropyn-1-ones 
(Scheme-30). When these resulting enamines react with dimethylsulfonium methylide, a 
cascade reaction occurs, resulting in the formation of 2,4-disubstituted furans. 

 
Scheme 30: Proposed Reaction Mechanism 

A straightforward methodology has been recently developed for the synthesis of 3-amino-5-
fluoroalkylfurans in quantitative or nearly quantitative yields starting from fluoroenones 
(Plaçais et al., 2021) (Scheme-31). 

 
Scheme 31: Synthesis of Substituted Furan via Intramolecular Cyclisation Reaction 
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leading to the formation of a five-membered ring. Subsequent aromatisation then yields the 
furan product. 
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Scheme 32: Proposed Reaction Mechanism of Synthesis of 3‑Amino-5-fluoroalkylfurans 

Conclusion 
In summary, this book chapter documents various metal-free approaches developed over 
the past five years for the synthesis of poly-substituted furans. Several attractive catalytic 
methodologies – such as those involving iodine, N-heterocyclic carbenes (NHCs), and acids 
– have been reviewed, along with representative examples of substituted furans synthesised 
via these methods. 
The corresponding mechanistic pathways for these transformations are also presented. 
Additional metal-free approaches, including phosphine-mediated synthesis, cycloaddition 
reactions, and multicomponent reactions, are discussed with relevant examples and 
mechanisms. Finally, two noteworthy methodologies based on the extended Corey–
Chaykovsky reaction and thionyl chloride-mediated synthesis of substituted furans are 
explored. In conclusion, this chapter offers helpful information regarding the importance and 
recent advancements in the sustainable synthesis of substituted furan scaffolds, which serve 
as crucial building blocks in both synthetic and biological chemistry. 
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