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ABSTRACT

The dynamics of a quantum dissipative system driven by a fast-oscillating high-frequency
periodic field has been investigated here in the semi classical regime. As the system can
no longer be considered to be in a conventional thermal equilibrium situation, the
theoretical study of these non-adiabatically driven systems is cumbersome. Here, the
frequency of external modulation is substantially higher as compared to all other pertinent
system frequencies. Beginning with a quantum system-reservoir Hamiltonian with explicit
time dependence, derive a time-independent effective c-number generalized Langevin
equation (GLE) at leading order by exploiting a technique from the protocol of MSPT
(multiple scale perturbation theory). Within the so obtained c-number GLE (which does
not include explicit time-dependence), the original system dynamics can be evaluated by
its slow part with the time-independent effective potential. Here the dynamics of the slow-
part are explored perturbatively in terms of w™ (w stands for the frequency of time-periodic
oscillating force) up to the order w. Modulation of the parameters of the effective potential
often provides a potential avenue to increase or abate the escape probability of the system
from the region of attraction of the potential well.

Keywords: Quantum Dissipative Systems; Dynamical Processes; Langevin Equation;
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Introduction

The question of how a system responds to an external rapid periodic perturbation is one
of the elementary problems in the field of chemical dynamics in condensed phases and
has importance in classical as well as quantum mechanics (Bukov, D’Alessio &
Polkovnikov, 2015; Hanggi, Luczka & Spiechowicz, 2020; Spiechowicz, Hanggi & Luczka,
2022). It plays primitive roles in many phenomenal applications, including escape from a
metastable state (Kapitsa, 1951; Landau & Lifshitz, 2013; Paul, 1990). Classical or
guantum time-dependent systems exhibit more difficult behaviour than
corresponding time-independent systems. Here, it is claimed that for a clear insight
(both qualitative and quantitative) into the dynamics of a rapidly modulated system,
multiple scale perturbation theory (MSPT) may be used as an effective tool. Theoretical
analysis of nonadiabatically driven systems is complicated, since one may no longer
assume that the system is in thermal equilibrium. On the other hand, for equilibrium
systems, the exponential part in the escape rate expression can be found as the height
of the free energy barrier, but for nonequilibrium systems, the pre-factor case is even
more complicated as there are no general relations from which it can be achieved.
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Literature Review

There have been many attempts to resolve the nonadiabatic response problem in many
contexts (Gammaitoni et al., 1998; Jung, 1993; Denisov et al., 2006; Denisov et al., 2007;
Denisov, Polyakov & Lyutyy, 2011; Kim et al., 2010; Spiechowicz et al., 2023). Thus, the
development of an elaborate theory of the dynamics of the system under the impact of
modulation is indispensable as well as useful. Here the dynamics of a quantum system
has been presented which is driven by a rapid, time-periodic, space-dependent oscillating
field, one of the most important classes of non-equilibrium systems. It is always hard to
anticipate the qualitative properties of systems with periodic modulation as compared to
the dynamics of structurally similar time independent systems, which are easy to perceive.
Here, the dynamics of time-dependent modulated systems in which there exists a clear
separation of time scales will be related to the dynamics of time-independent ones. Thus,
by using the experience with the dynamics of time-independent systems, both qualitative
and quantitative studies of the dynamics of time-dependent systems can be done. Here
the Brownian dynamics is analysed in the quantum regime in terms of an effective time-
independent Hamiltonian by invoking systematic expansion of the time-dependent
system-bath Hamiltonian in (being the driving frequency) with a systematic time scale
separation. It is found that the slow part of the motion may be interpreted by a time
independent effective potential and modulation changes the activation barrier, which
provides an effective control of the escape rate and a precise measurement of the system
parameters (Floquet, 1883; Shirley, 1965; Chen et al., 1973; Shit, Chattopadhyay & Ray
Chaudhuri, 2012a; Shit, Chattopadhyay & Ray Chaudhuri, 2012b; Shit, Chattopadhyay &
Ray Chaudhuri, 2012c; Shit, Chattopadhyay & Ray Chaudhuri, 2013). For rapidly
oscillating field frequencies, where the driving becomes nonadiabatic, the expected major
effect due to the field would "modulate” the system by changing its potential. Here the
study such driven systems in a very general form for a wide range of driving frequencies,
which goes far beyond the adiabatic limit. The description narrated below can be viewed
as a generalization of the work of Kapitsa-Landau-Lifshitz (Kapitsa, 1951; Landau &
Lifshitz, 2013) within the frame of system-bath model. This work may be implemented to
explore the escape dynamics and the trapping mechanism for the Brownian particle
moving in a space-dependent rapidly oscillating field (Shit, 2016).

Discussion

Consider the system to be a quantum particle of mass m associated with a bath consisting
of harmonic oscillators with characteristic frequencies {Q}} and masses {m;}. The system
is evolving under the influence of an external periodic potential V', (x”, wt) [where w is the
frequency of the external modulation]. Note that the average of the time-dependent
periodic potential V™, (x", wt) over a period [t = (2 /w)] can be delineated as follows:

171 (xAr (,()(t + T)) = VAl(xAi (,Ut),
1(°.
TJo

As expected, at t = 0 (when there is no external driving force), the harmonic bath is in
thermal equilibrium with the system. Note that at t = 0+, V, (%, wt) is turned on and the
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system starts moving in the external force. The total Hamiltonian (Weiss, 2012; Zwanzig,
1961; Zwanzig, 1973) can be constructed by a system part, a bath part and the system-
bath interaction part:

A~ A2 s\ 2

A= % + Vp(2) + Py (2, 08) + TN, {2”7’] + 202 (92,- - mC]’;?) } 1)
Here X is the position operator, and p corresponds to the momentum operator of the
system. {Qj,ﬁj} stands for coordinate and momentum operators for the harmonic bath and
obeys the relations [J?j,ﬁj] = (hé;;. The coupling between system and bath is linear in
nature characterized by the coupling parameter c;, ¥, stands for the system potential in
absence of coupling. Eq. (1) explicitly depicts that each of the harmonic bath oscillator is
shifted relative to the system by an amount dependent on their correlative coupling that
can be considered as a compensation of a renormalization of the system potential (Weis,
2012). In the present case, a revised bath Hamiltonian controls the proper distribution of
initial states which is expressed as:

A2 -\ 2
7 _vN |Pji,1 2 (o _ _CX
Hp = )4 [2 + szQf <x] -y

,att=0. (2

Exploiting Eq. (1), one can design Hamilton’s equation of motion (EOM) for both the
system variables as well as the bath degrees of freedom. These are two differential
equations due to the mutual interplay between the system and the bath. The Langevin
equation (which consists of both dissipation and fluctuation terms) can be obtained by
solving the required expressions of the bath degrees of freedom and subsequently
exploiting these equations into the corresponding equations of the system variables. The
statistical properties of the system degrees of freedom are characterized by the
distribution of the initial conditions of the bath degrees of freedom via the fluctuation-
dissipation relation. Here, the microscopic structure of the dissipative term and the
fluctuating force comprise the initial conditions of bath degrees of freedom. The operator
Langevin equation to describe the evolution of the system can be expressed as:

N
xX=—
m
p=V,@) -V, t) - [, dt'y(t—t)p(E") +7 () (3)

In the present work, the expression for the damping kernel can be described as y(t — t') =
%fj: dQ[J(Q)/Q] cos Q(t — t") where the term J(Q) stands for the spectral density of the
harmonic bath and the term 7j(t) describes the noise characterized by,

N

n,(0
A(t) = Z [mjcjﬂjz{a?j(O) — cja?(O)} cos Q;t + %sin Q;t

= J2%

In the Ohmic regime, () = myQ , where y denotes the friction coefficient. Note that 7j(t)
considered here is a zero-mean Gaussian random noise. The statistical properties of 7j(t)
can be constructed by exploiting appropriate canonical thermal distribution of bath
degrees of freedom at initial stage, t = 0,
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+00 dQ (

AOAE) +AEN(E)gs = h [1 (@) coth (5) cos At — ') (@)

Q
2kgT
Note that the above equation, Eq.(4), is the famous fluctuation-dissipation
theorem/relation (FDT/FDR) which is a very useful instrument in chemical physics for
monitoring the counter intuitive behavioural aspect of systems that follows structure of
detailed balance. Here kgT (kg stands for Boltzmann constant) delineates the equilibrium
thermal energy. In the model, the average is computed over the initial bath-variables as

_ Tr[0exp(-Hp/kpT)]

(0)gs = (5)

Trlexp(-Hp/kpT)]

where (...)os indicates a quantum statistical average over the bath-variables. As Eq. (3)
is the generalized quantum mechanical operator form of Langevin equation (Shit,
Chattopadhyay & Ray Chaudhuri, 2011b; Ghosh et al., 2011), it is practically
unmanageable and non-trivial task to obtain required solution. Therefore, it is practical to
sketch Eq.(3) in an operator-free manner. Obeying the scheme suggested by Ray and co-
workers (Barik & Ray, 2005), starting form a microscopic system-bath Hamiltonian, one
gets the following c-number generalized quantum Langevin equation delineating the
evolution of the expectation values position operators of the system under consideration:

mx =p
p = —Up(x) — Ui(x, wt) —yp +n(t) (6)
Where
Up = Vs (x(t)) — Q7
Ui = V{(x(t), wt) — Qy ()
Here
x(t) = (2())q
p(6) = (p(t))q
1) = (O = 3 G R (0o = (2O} cos Oyt + LPsin gyt ®)

(...)o describes quantum mechanical average estimate (Barik, Banerjee & Ray, 2009).
Here, Q0 and Q} symbolize the quantum mechanical correction terms, described by

Qv = Vo) = (Vg (®)g

Qy = Vi (x, wt) — (V{ (X, wt))q 9)
The system parameters X and p can be described as
x(t) = x(t) + 62(t), p(t) =p(t) +6p(0), (10)

Note that, in this model, the terms x(= (X),) and p(= (p)y) can be considered as the
guantum mechanical mean values. The operators §x and §p appear as quantum
fluctuations around their respective average values and they obey:

(62(1))g = 0 = (6p(D))q, [6%,6p] = ih (11)
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Exploiting Eq. (10) along with the Taylor series based expansion around x (Bhattacharya,
Chattopadhyay & Ray Chaudhuri, 2009),

1
Q) == > — VIR )

nz2
QF = = Tnzz 1 VI (x, D) (SR (1)) (12)

Here the term V"™*1(x) corresponds to the (n + 1)th derivative of V(x). Estimation of
Qv (x,t), (i = 0,1) relies on the quantum mechanical correction term (§£2™(t)), that can be

computed exploiting the scheme mentioned in References (Shit, Chattopadhyay & Ray
Chaudhuri, 2011b; Ghosh et al., 2011). The following expression can be used to ascertain
((t))q as a c-number noise:

((M(O))g)s = 0;
(O )))s = % M, ¢ Q2nQ; coth (%) cos Q;(t — t); (13)

Eq.(13) clearly advocates that the noise (#(t)), fulfils the quantum FDR, and is emerged
if and only if the initial mean-values of parameters (momenta and coordinates) of the bath
oscillators have canonical thermal Wigner distribution, P; for the displaced harmonic
oscillator:

P = Nexp _(ﬁj(o))zq"'ﬂ?[(f{(o))Q—Clj@(O))Q]Z (14)
J Zhﬂj(nj(ﬂj)+5)

Here, N appears as normalization constant. Note that positive definite function, P; depends
on the initial preparation of the system under study. Structural properties of P, remains

applicable as a pure state, non-singular distribution even at T = 0. In the above expression
n; can be characterized as average photon number at temperature T.

nj = [exp ( il ) — 1]_1 (15)

2kgT

In this model, the statistical average of any dynamical/observable 0; can be expressed as
(quantum mechanical mean value)

(0;(0))s = J 0; Bid(p;(0))d{(%;(0)) — (2(0))} (16)

As expected, for the case that hw < kgT (thermal limit), the form of the distribution of
guantum mechanical mean values of the bath oscillators converts to the corresponding
form of the Maxwell-Boltzmann distribution, the classical one. It is to be mentioned here
that Egs. (8), (14) and (16) can be exploited to reveal the characteristic features of the c-
number noise. Eqg. (6) can be viewed as the desired c-number quantum Langevin equation
(QLE). In this model, the two quantum correction terms Q) and Qj emerge from the
nonlinear nature of the potential used. Using a suitable physically motivated approximation
(Shit, Chattopadhyay & Ray Chaudhuri, 2011b; Ghosh, Shit, Chattopadhyay & Ray
Chaudhuri, 2011), Eqg. (13) can be described as where,

(((ON(E))g)s = 2Dg6(t — t)

130 Progress in Chemical and Biological Science



Profiling the Dynamics of a Stochastic Quantum System

D, = (yhzﬂ") coth ( el ) (17)

2kgT

Here Q, corresponds to a common linearized system frequency for all bath modes. In the
present development, the usual quantum statistical average is described by ((...)o)s. It is
to be noted here that although c-number noise 7n(t)(= (1(t)),) follows the FDR and
furnishes the same anti-commutator just as operator noise term 7(t), being a c-number
term, the commutator form of the same vanishes. In that sense, the treatment present
here is not fully quantum mechanical. Actually n(t) is a classical-like noise in conjunction
with quantum mechanical correction term. Thus, the present development can be
considered as a semiclassical scheme. Basically, in the present work, the system is
handled using a suitable quantum mechanical protocol, but the bath degrees of freedom
have been managed semi-classically. It is worth mentioning that the complexity of treating
the complicated operator quantum Langevin equation (OQLE) can be circumvented by
exploiting the above mentioned semiclassical approach that attempts to handle the OQLE
on the same footing as that of the classical LE while preserving the leading-order quantum

effect. Note that in the high temperature quantum regime, % « 1 (where the correction
B

terms corresponding to the quantum effect emerge as a coupled infinite set of a hierarchy
of equations) D, can be approximated as ykT and consequently, with this approximation,
from Eq. (13), one can obtain the following form of the classical standard &-correlated
FDR, independent of the system frequency:

n())s =0;
@ (t))s = 2vkgTo(t — t'), (18)

Eq. (18) is the famous Einstein FDR in the Markovian limit. This scheme hence assists to
get the classical form from the corresponding quantum mechanical relation.

Now, for the investigation of the dynamics of the present model, Eq. (6) with time
dependent potential needs to be solved which is very tough to reach and generally can be
achieved numerically by exploiting some physically motivated approx. scheme. In this
model, the high frequency oscillating force exerts the force F (%, wt) = —V/ (&, wt). Here,
the frequency w is very large compared to all other pertinent system frequencies:

w (a) > %) T can be viewed as the order of magnitude of the period of motion of the system

that it would perform in the field of Vj(%). Therefore, the system does not have enough
time to interact with the periodic force before the force alters sign. Under this condition,
one can apply "Kapitsa-Landau time- window" in which the motion of the particle can be
divided into a "slow" part as well as a "fast" one that comprises of a rapid motion around
the "slow" part. It should be noted that the fast motion emerges in an effective potential
for the "slow" motion. Therefore, focus on the following solution of Eqg. (6):

x(t) = X(t) + E(X, X, wt) (19)

Here, X(t) describes the ‘slow’ part whereas & corresponds to the ‘fast’ part of the motion.
In Ref. (Shit, Chattopadhyay & Ray Chaudhuri, 2012d), authors have demonstrated
clearly that & will rely primarily on X and X rather on the higher order time derivatives.
Here, ¢ has been selected in such a fashion that Eq. (6) will yield a time-independent
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equation for X. Although it is very difficult to achieve exact solution exploiting Eq. (6) but
in the limit of high frequencies, one can obtain in orders of% . Here, the following fast time
variable is suggested

T=wt
for which the time average of ¢ over one period disappears:
= —fz"d £(X,X,7) =0 (20)

It is to be clarified here that ¢ is not periodic in t instead, it should be a periodic function
of the 7. In the present work, both times, t and t are handled as independent parameters.
In terms of ‘fast time’ variable, t,

L_opEpByi Ly (21)
dt dat ax ax
and
d2& o€ 0% . 9% | 0F, 0%,
Sl QR o X+—24% =%
ez “ o2 ‘“[axar * o%er ]J’ax T ox
9%¢ oo 9%¢ 0%¢ oo
+oix2 42 x4 28 (22)

Exploiting Egs. (21) and (22) along with Eq. (6) get the following form [for details, see
reference (Shit, Chattopadhyay & Ray Chaudhuri, 2012a)]:

o, 08 0% 0F 5 | 0F | 0% 5, | o 0% 0% 55, :
m{X+w -+ 20 (aan+axa X) EX+2EX+ X242 kR + 25X }+yX+

y{ X+"’5X+“ af} —Ui(X+&)-U/(X+¢&,1)+n(t) (23)

Here the slow dynamics usually controls the overall dynamics of the particle. Note that
the initial noise term entirely has its impact on the slow dynamics, and it has no effect on

the fast dynamics. At the high frequencies, ¢ becomes be very small (of the order of é).
Thus, one can expand U,(X + &) and U, (X + &, 1) in powers of; U, and U; are assumed to
be smooth functions of the coordinate. Therefore, one can expand ¢ in powers of %z

§=Xn=17 —&n (24)

Here, selection of ¢§; should be in such a fashion that the equation of x which emerges
from Eq. (23) does not rely on time variable, . From Eq. (24) so,

mX + w2 zn—nén+2w(xmzn—nen 2%, nfn) = Vb
X’izn—nmxzaxzzn IR )'S S NPT MR G LS sn }+w‘r+
VXSt + RNt + 0 =S &} = — [0 +U (X, D} +

(U5 CO+U] (X, 0} X Ty = &+ 5 UG GOV (XD} By Tt o i +

-]+ 00
(25)
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To get the required equation, all the terms of the identical order are collected. From the very
mode of discussion, it is evident that in the leading order of w , the only contribution is

% _ . (26)

at?

Therefore, without sacrificing generality, one may adopt:

$1=0 (27)
For w® so
m{¥ + 22} 4 yX = —Us00-Ui (%, 7) (28)
To balance dependence, set
92§, /
T = Ui (29)

&, must be periodic in time variable, 7. To circumvent secular terms, the time integral
needs to have a vanishing average over a period.

&= —— [ dt [JdrUj(X,7) (30)
Substituting &, in Eq. (28), get

mX = -Uy(X) — yX. (32)
In the next order (w™1) get

92&; 9%¢&, 0%&, 98, _
( +2Xaxar+2Xaxa) YF_O

From Eqg. (30), it is evident that &, is not a function of X and hence the above equation
reduces to

%6 _ .,y 0% 06
at? 2X axot at (32)

Now, using Egs.(30) and (31), have the solution for ¢; as
&y = %Xfor dt fOT dt for dt Uy (X,7) + #for dt fOT dt fOT dr Ui (X, 7) (33)
Therefore, the terms of the order of w™2 can be expressed as

ﬁ y 6253 4 6253 652 2 ) fz afz 6_53 — Ty _ "
m[arz +2(Xaxar+Xaxar)+X ax2]+ [ ox T 61’] = —Uqy (X)¢; — U’ (X, D¢,
(34)

3¢ v (%) (7 T ' Ul (X7) T T ' 3 59 (T T "
o =————, dt [y dtU{(X,7) +1m—zrf0 dr [, dtUy(X, 1) — —X? [ dt [ dr U;" (X, 7) —

at2

. . 2
%Xfor dr [ dv Uy (X, 7) —%Xfordr Jy dT Uy (X,7) —%for dr [T dv U{(X,7) (35)
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Let &, be periodic in 7. Now a function f; (X, t) is constructed as follows:

AT == U (X,7) [§ dt [7 de Ui (X, ©) — — Uy'(X,7) [ dt [ de Uj (X, 7), (36)
so that f1(X,7) = 0.

Now choose ¢, as

§4 = U"’I(ZX) fOT dr fOTd‘L' fOT dr fOTdT Ui(X,7) + fOT deOTdel(X,T) -

%XZ fOTdT fOT deOTdT fOT dr U]" (X, 1) —%X’fordr fOTdT fOT dt fOTdT Uy (X,1) —

%Xfordr fOT dt fOTdT fOT dt U] (X, 7) —;—Zfor deOTdT fOT deOTdT Ui (X, 7) (37)

This solution equivalences all the t-dependence of Eq.(35) and yields the following extra
term,

1 T T
WU{’(X,T)[ drf dtU;(X,7)
0 0

which for slow dynamics yields,

n

mX +yX = U}

) (38)

The above equation can be considered as the leading order correction corresponding to
the periodic potential U;. The terms of the order of w3 of Eq. (25) provide:

[" fs+2(X‘3 iz +X62€4)+X653+X6€3+X26 Ly oxi 2 3226 f3] +

axot axa aXoxX ax?
) 0 a " "
X5+ X5+ 5 = U 08 - v =

Now, & will be chosen in a manner ensuring that it shall scarp all the periodic terms with
vanishing average. Note that entire terms of LHS of Eq. (39) has a vanishing average.
Consequently, only the terms of RHS of Eq. (39) shall contribute to the slow coordinate.
This contribution will result only from —UJ'&; — U], and, as the term Uj'&; vanishes as
per this model, one may easily obtain,

—U7Es = -5 [§ de U (X, ©) [ de [ dr U (X, ) (40)

Incorporating the effect of this term [i.e., 0(w™3)] into the slow dynamics, one will have
(using integration by parts),

mX +yX = —Uj(X) +— f dr U (X, T)f dt U] (X,7) +
2—me dr U] (X, 7) fo dr fo dtU;(X,7) + 0O(w™) (41)

the contribution of terms 0(w™*) to the equation of X is

n n 1 nr 1 nr
_Uof4_U1€4_5Uo 522_5U1 622 (42)

Although the averages of other terms have finite values, but the first term will vanish again.
From Egs.(30) and (37), one gets
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T T , 2
—Uy ()& — U7X, D& — Uy CO& — - Uy (X, & = O[S dr [T dTUi(x, 0] -
T T , 2 " T ” o = = p
ﬁU{”(X, T)[fo dr [, dr U;(x, 0 + %o (ZX) J, dtuy' (X, 1) [ dt [ dt [ drUj(X,7) +
— [y deUy (X, 1) [ dT[U{(X,7) [y de [ dr Uj (X, 7)] -
3 ¥ " "
—X? Jy dtUy (X, T) [Jdr [ dT [ dTv Uy (X, T) —

3 " "
;Xfor dzU;' (X, 1) fOTdT fOT dt fOTdT Uy (X,7) —

3V v " " 2 " l
m—];XfOTdTU1 X, 1) fOT deOTdT fOTdT U/ (X,7) —%f;dr Uy (X,7) fOTdT fOT deOTdT U, (X, 7).

Including these terms 0(w™*) into the slow dynamic provide the EOM for slow variable as

mX +yX = -Us(X) —

X, 1)+

(X, T)deTdeTU’(X ) -

O[T dr [ de Ui, 0] -

2m2w4 ——U;"(X, T)[f drf dr U (X, T)] —
U(’,’(X)f d‘cf dt U;'(X,7) f drf dtU;(X,7) —
— Uy (X, T)f drf dr Uy (X, ‘L')f drf dtU;(X,7) +

m2w
1
m2w

3

[fOTdT fOTdT U{’(X,T)]2 +

fdtf dzU; (X, T)f drf dz U;"

— 4X[f dr f dr U] (X, T)] 1 (X,’l') fOTdeOTdT Ui(X,7) + 0(w™) +
n(t) (43)

Substitution of X by —V;"—%X, incorporates a very insignificant error of the order of

w *0(w™™)] in Eg. (43). Performing suitable manipulation of algebra, finally get the
following the EOM for the slow part (corrected up to the order w™*)

mX +yX = —Ugz5(X) +— Xzf drf dtU; (X, 7) f drf drU"(X,7) +

3Uq [f dr deU”(X ’l')] !

m24

fo dtU;(X,7) +

TXT) [ dr fof dt U, (X,7) + n(t) (44)

where U,¢((X) can be considered as the effective potential and can described as,

144

fOT dr Uj (X, T)]2 +

Ueff(X) = Up(X) — [ Jy dr U; (%, )]’

Uy X[, dr f; dr Uy (X, r)] (45)

224—

It is to be noted here that the noise term only arises in the EOM of the slow variable, and
the y-containing terms are explicitly dropped from arising in the equation of U,, rather,
two other terms of EOM contain it owing to the dissipative surrounding. If there is no
interaction of the system with surrounding, the y-containing terms do not arise in the
dynamical equation. Here quantum effect is manifested in Eq. (44) in U, and U; through
the correction terms Q2 and Q; . If one had used the classical calculation only, there would
be no contribution of Q2 and Qt. Then, the contribution of U, and U, would have been
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replaced by V, and V;. In the classical limit (A — 0), on incorporation of terms O (w™3),
Eq.(44) converts to the following form

.. . 1 T T
mX +yX = -Uj(X) +—2J dtU;(X,7) f dtU]'(X, 1)
mw? J, o

y T . T T ,
+mfod‘rU1 (X,T)fodrfodTUl(X,T)+n(t)

which is identical with equation (28) of Ray Chaudhury and co-workers (Shit,
Chattopadhyay & Ray Chaudhuri, 2012a). At this point, it is important to note that in the
previous works (Shit, Chattopadhyay & Ray Chaudhuri, 2012, Shit, Chattopadhyay & Ray
Chaudhuri, 2011a), pure guantum mechanical model upto the order w2 has been
published. From the expression of effective time independent Langevin equation [Eq.
(44)] of this description, different dynamical studies may be performed. By defining a
particular model system potential, Eq. (44) may be numerically simulated (Shit, 2016) to
investigate the escape rate of the perturbed/dressed particle and the influence of the
external modulation on the resulting rate along with the thermal noise may also be studied.
The effective potential described and characterized above has the capability to confine
the particle. It is very crucial to note that a bound rapidly oscillating potential confines
systems even if its time average disappears. This work may also have some applications.
For instance, depending on the nature of spatial variation of the applied forces, the
effective potential defined above often have more than one local minimum even if the initial
(unmodified) potential has only single local minima. Under such situations, a collection of
Brownian particles would tend to segregate in two separate collections.

Conclusion:

Reaction and feedback of a dynamical system to a rapidly oscillating periodic driving force
are two of the most challenging and fundamental issues in the realm of chemical dynamics
in condensed phases. Time dependent rapidly driven quantum dissipative systems exhibit
an intricate interplay of linearity, SB coupling, and nonequilibrium behaviour as a result of
the time dependent driving. In this work, beginning from a quantum mechanical system-
bath Hamiltonian with explicit time-dependence, using multiple scale perturbation theory,
an effective time-independent c-number generalized Langevin equation at leading order
is derived with an effective time independent potential which permits one to survey the
dynamics of the system under the influence of rapidly oscillating fields, in the architecture
of methodologies that were designed for systems in the presence of time-independent
potentials. Calculations for the dynamics of the slow part have been done perturbatively
in powers of the frequency (w) of the external driving force used to the order of 1/w*. The
described work may contribute to the microscopic understanding of barrier crossing
phenomena under the impact of a rapidly oscillating field in condensed phases, and in
particular non-adiabatic effects and may help to understand and interpret many
experimental results.
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